Collective Excitations in Unstable Nuclei and in Inner

Download Report

Transcript Collective Excitations in Unstable Nuclei and in Inner

Mean Field Methods for Nuclear
Structure
Nguyen Van Giai
Institut de Physique Nucléaire
Université Paris-Sud, Orsay
Part 1: Ground State Properties:
Hartree-Fock and Hartree-FockBogoliubov Approaches
Part 2: Nuclear Excitations: The
Random Phase Approximation
12 June, 2006
Istanbul, part I
1
Nguyen Van Giai
Outline of part 1
•
•
•
•
•
•
- Introduction
- Non-relativistic energy density functional
- Densities and Potentials
- HF and HFB in spherical symmetry
- Illustrative examples
- Summary
12 June, 2006
Istanbul, part I
2
Nguyen Van Giai
Microscopic approaches to many-body,
finite nuclear systems
• Theoretical models based on effective interactions
between nucleons:
- Nuclear shell model
- Mean field approaches (and beyond):
-Non-Relativistic (Skyrme forces, Gogny force)
-Relativistic (RMF,RHF)
- Molecular dynamics
• going away from stability regions, we need a theoretical
framework which can be predictive and able to handle
new situations (continuum, pairing correlations in
continuum).
• the Hartree-Fock + Random Phase Approximation (and
their extensions to include pairing effects) can be used
from unstable nuclei to neutron star crust.
12 June, 2006
Istanbul, part I
3
Nguyen Van Giai
Hartree-Fock, and HF-Bogoliubov for
systems with pairing correlations
 
i1 i 2
HF

iA
a a .....a 0
HFB   a
†
i
i
(u
p
k
12 June, 2006
†
i
ik
i
†
p'
p
   (u a  v a )
†
 vp a a ) 0
†
p
ik
i
Istanbul, part I
k HFB  0
4
Nguyen Van Giai
Energy Density Functional in
Hartree-Fock
12 June, 2006
Istanbul, part I
5
Nguyen Van Giai
Effective Interaction: Skyrme force
Pairing channel:
12 June, 2006
Istanbul, part I
particle-hole
channel:
particleparticle
channel:
Skyrme
interaction
zero-range
6
Nguyen Van Giai
Densities
• Normal density, or
density matrix

ij

  a ai 
†
j
†



†


• Abnormal density, or
pairing tensor

  


a
a

j
i
ij
12 June, 2006
T
Istanbul, part I
7
Nguyen Van Giai
One-body densities in Hartree-Fock
12 June, 2006
Istanbul, part I
8
Nguyen Van Giai
The Energy Density Functional
12 June, 2006
Istanbul, part I
9
Nguyen Van Giai
The Skyrme-HF equations
Variations with respect to single-particle wave functions:
12 June, 2006
Istanbul, part I
10
Nguyen Van Giai
The Skyrme-HF effective masses
12 June, 2006
Istanbul, part I
11
Nguyen Van Giai
The Skyrme-HF central potentials
12 June, 2006
Istanbul, part I
12
Nguyen Van Giai
The spin-orbit and Coulomb
potentials
12 June, 2006
Istanbul, part I
13
Nguyen Van Giai
The center-of-mass correction
12 June, 2006
Istanbul, part I
14
Nguyen Van Giai
Spherical case: radial equations in r-space
12 June, 2006
Istanbul, part I
15
Nguyen Van Giai
Potentials
Densities
Effective masses
Spin-orbit
potentials
From: Bender et al.,
Revs.Mod.Phys.,
75, 121(2003)
12 June, 2006
Istanbul, part I
16
Nguyen Van Giai
N-Z
Binding
Energy
Errors
A=N+Z
From: Bender et al.,
Revs.Mod.Phys.,
75, 121(2003)
12 June, 2006
Istanbul, part I
17
Nguyen Van Giai
2-neutron separation energies
From: Bender et al.,
Revs.Mod.Phys.,
75, 121(2003)
12 June, 2006
Istanbul, part I
18
Nguyen Van Giai
Single-particle
energies
From: Bender et al.,
Revs.Mod.Phys.,
75, 121(2003)
12 June, 2006
Istanbul, part I
19
Nguyen Van Giai
r.m.s. radii
From: Bender et al.,
Revs.Mod.Phys.,
75, 121(2003)
12 June, 2006
Istanbul, part I
20
Nguyen Van Giai
Generalization to Hartree-FockBogoliubov
12 June, 2006
Istanbul, part I
21
Nguyen Van Giai
HFB densities in spherical case
• Nuclear density
• Abnormal (or pairing)
density
• Kinetic energy density
• Spin density
12 June, 2006
Istanbul, part I
22
Nguyen Van Giai
The Hartree-Fock-Bogoliubov
Equations
12 June, 2006
Istanbul, part I
23
Nguyen Van Giai
Hartree-Fock field and pairing field
12 June, 2006
Istanbul, part I
24
Nguyen Van Giai
Finite-Temperature HFB
1
T 
4
DT(r) = Vpair T(r)
*
(
2
j

1
)
U
 i
i ( r )Vi ( r )(1  2 f i )
where :
12 June, 2006
Istanbul, part I
fi=(1+eEi/kT)-1
25
Nguyen Van Giai
Quasiparticle continuum
12 June, 2006
Istanbul, part I
26
Nguyen Van Giai
Treatment of quasiparticle
continuum (1)
12 June, 2006
Istanbul, part I
27
Nguyen Van Giai
Treatment of quasiparticle
continuum (2)
12 June, 2006
Istanbul, part I
28
Nguyen Van Giai
Treatment of quasiparticle
continuum (3)
12 June, 2006
Istanbul, part I
29
Nguyen Van Giai
Discretization by box boundary
condition
• Alternatively, one can enclose the system
in a box of radius R.
• The quasiparticle spectrum is calculated
with the boundary condition that the wave
function vanishes at r=R.
• One thus obtains a discrete set of states
forming a complete basis in the box.
12 June, 2006
Istanbul, part I
30
Nguyen Van Giai
illustration: Ni isotopes
12 June, 2006
Istanbul, part I
31
Nguyen Van Giai
E. Khan,
N. Sandulescu
Nguyen Van Giai
12 June, 2006
Istanbul, part I
32
Nguyen Van Giai
Inner Crust Matter
~ 0
~ 0.5
0
~ 0.0010
Crystal lattice structures
12 June, 2006
Istanbul, part I
33
Nguyen Van Giai
Elementary cells
Wigner-Seitz cell
12 June, 2006
Elementary cell
Istanbul, part I
Lattice
34
Nguyen Van Giai
Density in the Wigner-Seitz Cells
N.Sandulescu, Nguyen Van Giai,R.J.Liotta,
Phys.Rev.C69(2004)045802
12 June, 2006
Istanbul, part I
35
Nguyen Van Giai
Pairing Field in the Wigner-Seitz Cells
N.Sandulescu, Phys.Rev.C70 (2004) 025801
12 June, 2006
Istanbul, part I
36
Nguyen Van Giai
SUMMARY
• A self-consistent theory of nuclear ground
states.
• Pairing and continuum effects are treated.
• Applications to the description of unstable
nuclei.
• Applications to the physics of the inner
crust of neutron stars.
12 June, 2006
Istanbul, part I
37
Nguyen Van Giai
Lectures on:
Mean Field Methods for Nuclear Structure
List of references for further reading
•
•
•
•
•
•
•
•
•
•
•
•
•
1. P. Ring, P. Schuck, “The Nuclear Many-Body Problem”, Springer-Verlag (New York, 1980)
2. Hartree-Fock calculations with Skyrme’s interaction. I: spherical nuclei, D. Vautherin, D.M.
Brink, Phys. Rev. C 5, 626 (1972)
3. Hartree-Fock calculations with Skyrme’s interaction. II: axially deformed nuclei, D. Vautherin,
Phys. Rev. C 7, 296 (1973)
4. A Skyrme parametrization from subnuclear to neutron star densities, E. Chabanat, P. Bonche, P.
Haensel, J. Meyer, R. Schaeffer: Part I, Nucl. Phys. A 627, 710 (1997); Part II, Nucl. Phys. A 635,
231 (1998); Erratum to Part II, Nucl. Phys. A 643, 441 (1998)
5. Self-consistent mean-field models for nuclear structure, M. Bender, P.-H. Heenen, P.-G.
Reinhard, Revs. Mod. Phys. 75, 121 (2003)
6. Hartree-Fock-Bogoliubov description of nuclei near the neutron drip line, J. Dobaczewski, H.
Flocard, J. Treiner, Nucl.Phys. A 422, 103 (1984)
7. Mean-field description of ground state properties of drip line nuclei: pairing and continuum
effects, J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.-F. Berger, C.R. Chinn, J. Dechargé,
Phys. Rev. C 53, 2809 (1996)
8. Pairing and continuum effects in nuclei close to the drip line, M. Grasso, N. Sandulescu, N. Van
Giai, R. Liotta, Phys. Rev. C 64, 064321 (2001)
9. Nuclear response functions, G.F. Bertsch, S.F. Tsai, Phys. Rep. 12 C (1975)
10. A self-consistent description of the giant resonances including the particle continuum, K.F. Liu,
N. Van Giai, Phys. Lett. B 65, 23 (1976)
11. Continuum quasiparticle random phase approximation and the time-dependent HFB approach,
E. Khan, N. Sandulescu, M. Grasso, N. Van Giai, Phys. Rev. C 66, 024309 (2002)
12. Self-Consistent Description of Multipole Strength in Exotic Nuclei I: Method, J. Terasaki, J.
Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, M. Stoitsov, Phys. Rev. C 71, 034310 (2005)
13. Self-consistent description of multipole strength: systematic calculations, J. Terasaki, J. Engel,
ArXiv nucl-th/0603062
12 June, 2006
Istanbul, part I
38