Transcript 下载1

相对论的复标度方法及对
Gamow态的研究
郭建友
安徽大学物理学院
内容提要
一、引言
二、理论框架
三、结果分析
四、小结
一
引 言
 Gamow态的研究意义
 晕和皮等奇特现象的形成
扮演重要作用
J.Meng and P.Ring, PRL77,
3963 (1996), PRL80,460 (1998)
给出晕结构的合理解释;并
预言巨晕:N82 Zr40同位素
可以有巨晕现象.
 31Ne形变
晕的解释
PRC81,021304(R),
(2010),
I Hamamoto
 巨晕 的预言
 滴线附近核的能级结构-壳结构和新幻数
I Hamamoto, PRC79 (2009)
 在集体巨共振的形成中扮演重要作用
The single particle
resonances in the
continuum play an
important role in the
description of the nuclear
dynamical processes,
such as the collective
giant resonances.
L.G.Cao, Z.Y.Ma,
PRC60 (2002)
024311
 滴线附近核的寿命
中子衰变和质子衰变
 恒星的核合成
Nucleosynthesis
in red giants
Proton Number
Nucleosynthesis in
binary systems
Fe
Nucleosynthesis
in supernovae
Neutron Number
Properties of the resonant states play a important role in the nucleosynthesis
 Gamow 态的研究方法
1) R-Matrix method, Phys.Rev.72, 29 (1947)
2) S-Matrix method, J.R.Taylor, Scattering Theory
3) 连续谱理论, NPA635,31(1998); NPA422,103(1984)
4) J-Matrix method, H. A. Yamani and L. Fishman, J. Math.
Phys. 16, 410(1975); A.M.Shirokov,etal, Inverse
scattering J-matrix approach to nucleon-nucleus
scattering and the shell Model, PRC(2009)
5) To solve the coupling equation in coordinate space,
PRC72,024301(2005); PRC77,054311(2008)
6) Real stabilization method(RSM)实稳定化方法
A. U. Hazi and H. S. Taylor, Phys. Rev. A1, 1109 (1970);
Y. K. Ho, Phys. Rep. 99, 1 (1983).
7) Analytic continuation in the coupling constant(ACCC)耦合常数
的解析延拓方法
V. I. Kukulin and V. M. Krasnopol'sky, J. Phys. A 10, 33 (1977).
V. I. Kukulin, V. M. Krasnopl’sky and J. Hor´acek, Theory of
Resonances: Principles and Applications (Kluwer Academic,
Dordrecht, 1989).
8) Complex scaling method(CSM) 复标度方法
Y. K. Ho, Phys. Rep. 99, 1 (1983).
A. T. Kruppa, R. G. Lovas, and B. Gyarmati, Phys. Rev. C 37, 383 (1988).
注:4)、5)和6)求共振态的方法是类束缚态的方法
 Gamow态的研究进展(几种类束缚态方法情况)
非相对论情况:
• RSM
H. S. Taylor and A. U. Hazi, Phys. Rev. A 14, 2071 (1976).
V. A. Mandelshtam, T. R. Ravuri, and H. S. Taylor, Phys. Rev. Lett. 70, 1932 (1993).
A. T. Kruppa and K. Arai, Phys. Rev. A 59, 3556 (1999).
计算精度会影响共振态参数
• ACCC
N. Tanaka, Y. Suzuki, and K. Varga, Phys. Rev. C 56, 562 (1997).
N. Tanaka, Y. Suzuki, K. Varga, and R. G. Lovas, Phys. Rev. C 59, 1391 (1999).
计算了一些轻核的共振能量和宽度
G. Cattapan and E. Maglione, Phys. Rev. C 61, 067301 (2000)
求解含有Woods-Saxon势的薛定谔方程得出共振态的波函数
• CSM
Kiyoshi Kato, J. Phys.: Conf. Ser. 49, 73 (2006).
A. T. Kruppa, R. G. Lovas, and B. Gyarmati, Phys. Rev. C 37, 383 (1988).
B. Gyarmati and A. T. Kruppa, Phys. Rev. C 34, 95(1986).
A. T. Kruppa, P. -H. Heenen, H. Flocard, and R. J. Liotta, Phys. Rev.Lett.79, 2217 (1997).
K. Arai, Phys. Rev. C 74, 064311 (2006).
虽然求解复本征值比较麻烦,但还是通过引进数学上的拉盖尔函数简化
了计算过程
相对论情况:
•
ACCC
S. C. Yang, J. Meng, S. G. Zhou, Chin. Phys. Lett. 18, 196 (2001).
S. S. Zhang, J. Meng, S. G. Zhou, and G. C. Hillhouse, Phys. Rev.C
70, 034308 (2004).
将ACCC拓展到RMF框架, 利用ACCC研究一些共振态的共振参数。
J.Y. Guo, R.D. Wang, and X.Z. Fang, Phys. Rev. C 72, 054319(2005).
J.Y. Guo and X.Z. Fang, Phys. Rev. C 74, 024320 (2006).
在RMF框架下,利用ACCC研究一些核的共振能级结构和赝自旋对称性。
• RSM
L. Zhang, S.G. Zhou, J. Meng, and E.G. Zhao, Phys. Rev. C 77, 014312
(2008).
将RSM拓展到RMF框架,并与ACCC计算结果进行了比较。
• CSM
1)
PETR SEBA,The Complex Scaling Method for Dirac Resonances,Letters in
Mathematical Physics 16 (1988) 51-59, 从理论上证明了CSM可以拓展到Dirac方
程
2)
I. A. Ivanov, Complex rotation method for the Dirac Hamiltonian, PRA 69,
023407 (2004), 利用基展开方法计算类氧离子在均匀电场中的共振态
3)
V.M. Shabaev etal.,Dual Kinetic Balance Approach to Basis-Set
Expansions for the Dirac Equation, PRL93, 130405(2004), A new
approach to finite basis sets for the Dirac equation is developed. It does not
involve spurious states and improves the convergence properties of basis-set
calculations.
4)
G. Pestka, Application of the complex-coordinate rotation to the relativistic
Hylleraas-CI method: a case study, JPB 39 (2006) 2979–2987, 利用Hylleraas-CI
求解 Dirac–Coulomb问题,计算了两电子原子的共振态
5)
A. D. Alhaidari, Relativistic extension of the complex scaling method, PRA 75,
042707 2007, 利用Laguerre polynomials作为基,研究了CSM方法的相对论拓
展问题
 CSM 在核物理中的应用
•
CSM + few-body model
1) Takayuki Myo, etal.,Analysis of 6He Coulomb breakup in
the complex scaling method, PRC63, 054313(2001)
2) Kenichi Yoshida,Role of low-l component in deformed
wave functions near the continuum threshold, PRC 72,
064311 (2005)
3) A. T. Kruppa,Scattering amplitude without an explicit
enforcement of boundary conditions, PRC 75, 044602
(2007)
•
CSM + Shell model => Gamow Shell Model
1) N. Michel, etal., Gamow Shell Model Description of Neutron-Rich
Nuclei, PRL89, 042502 (2002).
2) N. Michel, etal., Gamow shell model description of weakly bound
nuclei and unbound nuclear states, PRC67, 054311 (2003).
3) G. Hagen,etal.,Gamow shell model description of weakly bound
nuclei and unbound nuclear states, PRC 73, 064307 (2006)
4) N. Michel, etal., Antibound states and halo formation in the Gamow
shell model, PRC74, 054305 (2006).
5) J. Rotureau, etal., PRL97, 110603 (2006).
6) N. Michel, Shell Model in the Complex Energy Plane,
JPG36,013101(2009)
•
CSM + HFB => Gamow-Hartree-FockMethod
Particle-Unstable Nuclei in the Hartree-Fock Theory,
A.T.Kruppa, and etal., PRL79, 2217(1997)
Resonances in the Hartree-Fock BCS theory,
A.T.Kruppa, PRC63, 044324(2001)
Gamow-Hartree-Fock-Bogoliubov method:
Representation of quasiparticles with Berggren sets of
wave functions,
N. Michel, etal., PRC 78, 044319 (2008)
二
理论框架
 Complex Scaling Method (CSM)
The starting point of the CSM is a transformastion of the
Hamiltonian H. First one defines the unbounded nonunitary
scaling operator U(θ) :
U    r   exp  3i / 2  r exp  i  
whereθ is real. The transformed complex scaled Hamiltonian
is of the form:
1
H  U   H U  
 Relativistic Complex Scaling Method (R-CSM)
1. A bound state eigenvalue of H remains also an eigenvalue
of H

 E  i  / 2 of the Green-operator
2. A resonance pole
of H is an eigenvalue of H
3. The continuous part of the spectrum of H is rotated down
into the complex energy plane by the angle θ .
4. The important point is that the wavefunctions of resonant
states are square integrable.
Y. K. Ho, Phys. Rep. 99, 1 (1983);
N. Moiseyev, Phys. Rep. 302, 211(1998)
非相对论情况
复标度( r→reiө )的复能量面,方框
代表束缚态,实线代表连续态,圆
圈代表共振态。
复能量面,有限基情况。
相对论情况
RCSM
 RMF-CSM
 拉氏量密度
1
1
L    i   M       m 
2
2
1
1
3

g


g3 4  g



2
3
4
1
1
1
1
      m2     g   R  R  m2      g   
4
2
4
2
1 3
1
 F  F  e 
 A
4
2


2
2
 运动方程
  p  V (r)   M  S (r)  






Dirac equation




    m2  (r )   g  s (r )  g 2 2 (r )  g 3 3 (r )

2
 
 



m

(
r
)

g
j
(r )



 

2  
Klein-Gordon equation
    m  ( r )  g  j ( r )
 A (r )  ej  (r )
0


对于球形核, Dirac 旋量可展开为
l
 f n (r )Y jm
( ,  ) 

 n  r   
 ig (r )Y l ( ,  ) 
jm
 n

Dirac-方程变为
d 1   

 V  S  M  dr  r   f (r ) 
 f (r ) 


  

d
1


g
(
r
)
g
(
r
)
 



V  S  M 


r
 dr

 RMF-CSM 计算公式
引入一套完备基 {Rnl(r)} 展开Dirac旋量f(r)和g(r)如下:
这里
I n,n '   n,n '
,
I n,n '   n,n '
Vn,n '   r 2 dr Rnl (r ) V (r )  S (r )  Rn 'l (r )
N nl l  x2 l 1/ 2 2
N n 'l l  x2 l 1/ 2 2
  r dr 3/ 2 x e Ln 1 ( x ) V (r )  S (r )  3/ 2 x e Ln '1 ( x )
b0
b0
2
K
   nk  n ' k V (b0  k )  S (b0  k )  ,
k 1

n,n '
V
K
   nk  n ' k V (b0 k )  S (b0 k )  ,
k 1
( K  nmax )
( K  nmax )
k( k ) 和 nk ( nk )是矩阵JK的本征值和本征函数,矩阵元为JK n,n  2n  l  1/ 2
( JK n,n  2n  l  1/ 2)和JK n,n1   n(n+l +1/2) (JK n,n 1   n(n  l  1/2) )
Bn ,n '
d 1 
  r dr Rnl  r      Rn 'l  r 
 dr r r 
 1
n  l  1/ 2 n ,n '  n n ,n '1 ,   0
 b
 0

 1 n  l  1/ 2  n  1
 0
n,n '
n , n ' 1 ,
 b0
2




PRA 75, 042707 2007
Bn ,n '
d 1 
  r dr Rnl  r      Rn 'l  r 
 dr r r 
2
 1 

1
 n  2l  1 n  2l  2  n,n '  ,   0

 n  n  1 n  2,n ' 
2b0
 2b0 



1
 1  n  1 n  21 

n

2
l
n

2
l

1

 0






n  2, n '
n,n '  ,
 2b 
2b0
0 


引入复标度变换如下:
r  re
i
x  r / b0
b0  b0 ei
三、结果分析
(一)、谐振子基展开的复标度方法
(二)、谐振子基与Laguerre基展开的比较
(三)、RMF-CSM 对原子核共振态的计算
(一)、谐振子基展
开的复标度方法
Computer Physics
Communications 181 (2010),
Jian-You Guo etal.
 能量和宽度与θ的关系
 共振态的能量和宽度与
展开基的个数 N 的关系
V(r)=7.5r2e-r, S(r)=0, κ=-1,
谐振子基参数
θ=50º, b0=1.0a.u.
 共振态能量和宽度与振子
长度参数 b0 的关系
 谐振子基展开方法计算结果与文献结果的比较
相对论情况:
V(r)=7.5r2e-r, S(r)=0, κ=-1, 谐振子基
参数 N=100, θ =50º, b0=1.0 a.u.
[44] A.D. Alhaidari, PRA75, 042707, 2007
非相对论近似情况:
 原子分子共振态的计算
Morse potential
N=100,
θ=50º
JPB41,215001(2008)
R-CSM
JPB41,215001(2008)
R-CSM
(二)、谐振子基展
开与Laguerre基展
开的比较
Comloub
Potential
Int.J.Mod.Phys E19 (2010),
Jian-You Guo etal.
Oscillator Potential
Exponental Potential
 计算结果的比较——束缚态
 计算结果的比较——共振态
V(r)=7.5r2e-r,
S(r)=0, κ=-1,
基参数
N=100, θ
=50º
(三)、RMF-CSM 对 120Sn单粒子共振态的研究
Phys.Rev.C (2010), Jian-You Guo etal.
 RMF-CSM计算的束缚态,共振态和连续谱
Er [MeV]
-40
0
40
Er [MeV]
80
120
0
-10
30
40
-4
-20
-30
Ei [MeV]
o
 = 10
Ei [MeV]
20
0
0
o
 = 10
-8
-12
-40
-50
10
l=0,1,2,...,14
l=0,1,2,...,14
 共振态和连续谱 与展开基参数 Nf 的关系
Er [MeV]
0
10
20
30
40
0
20
30
40
f5/2,h9/2
o
 = 10
-8
Nf=20
-12
0
10
-4
i11/2,13/2
-8
j13/2,15/2
-12
20
30
40
0
-4
-4
-8
-8
Nf=40
Nf=30
0
0
-12
10
0
-4
Ei [MeV]
0
-12
10
Nf=50
20
30
40
 共振态和连续谱与复标度参数θ的关系
Er [MeV]
0
6
12
18
24
30
36
0
0
0
-4
-4
-8
6
12
18
24
30
36
18
24
30
36
-8
o
=2
o
=4
-12
-12
o
=6
o
=8
Ei [MeV]
-16
o
 = 12
-20
0
6
12
-20
18
24
30
36
0
0
0
-4
-4
-8
-8
-12
-12
-16
-20
j13/2
i13/2
-16
i11/2
o
 = 10
-16
-20
6
12
j15/2
 共振参数的确定——θ轨迹
Er [MeV]
12.44
Ei [MeV]
-0.84

12.48
12.52

-0.90


12.56
j15/2
-0.96
12.560 12.568 12.576
-1.02
-1.08
-0.984

-0.990
-0.996
-1.14







 RMF-CSM计算结果与文献的比较
L. Zhang,
S.G.Zhou,
etal.,
PRC 2008
SCYang, CPL(2001);
SSZhang, PRC(2004);
JYGuo,PRC(2005);PRC(20
06).
LGCao, ZYMa,
PRC60 (2002);
NSandulescu,
PRC2003
四、小结与展望
• 发展了 RMF-CSM 方法。
• 比较了两种基展开计算的优缺点,检验了模型的有效性。
• 对具体核的 Gamow 态进行了计算,得到了满意的结果。
• 发展变形核的RMF-CSM,研究变形核的性质。
• 发展相对论连续谱壳模型