Transcript Document

ANGULAR DIFFERENCE
PROTECTION SCHEME USING
PMUS
ENRIQUE MARTINEZ MARTINEZ
COMISION FEDERAL DE ELECTRICIDAD
MEXICO
ACTUAL TRENDS IN DEVELOPMENT OF POWER SYSTEM PROTECTION AND AUTOMATION
7-10 SEPTEMBER 2009, MOSCOW
INTRODUCTION

GENERATION-LOAD BALANCE

TRADITIONAL SPECIAL PROTECTION
SCHEMES


UNDERFREQUENCY LOAD SHEDDING

UNDERVOLTAGE LOAD SHEDDING

GENERATOR SHEDDING
THE QUESTION IS …

SYSTEM SEGREGATION

MAINTAIN SYSTEM INTEGRITY
CFE SYNCHROPHASOR MEASUREMENT
SYSTEM


CFE PMU INSTALLATIONS

INTERCONNECTED NATIONAL SYSTEM

NORTH BAJA CALIFORNIA SYSTEM

SOUTH BAJA CALIFORNIA SYSTEM
PMUS APPLICATION LEVELS

INTERCONNECTED NATIONAL SYSTEM

AREAS

AREA INTERCONNECTIONS SPS

MAIN SUBSTATIONS AND POWER PLANTS
U.S.A.
(MIGUEL)
U.S.A.
(IMPERIAL V.)
OZA RINNZICROCTY
RUM
TJI
PAP
PJZ
TEK
STB
APD
RZC
ROA
WIS
NEP
MXI
CPU
CPT
CIP
PMU´S AND AGSS´S LOCATION
(U.S.A.)
AZCARATE.
(U.S.A.)
DIABLO
HGO
CSC CHQ
CPD
SSA
CNN
ICA
STA
VJZ
REA
SCN
NRI
SYC
SVE
TRI
KON
SAF
HLT
PLD
LCD
HLC
NGC
LCF
MCZ
SQN
CUN
HLI
AUA
CHD
SMN
PNE
PGD
COT
AVL
FVL
REC
NAV
HCP
COC
CBD
ENO
PNO
NUR
CGD
HTS
CID
MON
NUL
LAM
FRO
LMD
LRO
OJC
CPR
ADC
SGD
PES
TPO
NIC
GMD
APC
RAP
INS
CUT
SCP
VIO
PUP
GAO
ZCD
AGS
CDA
ZPP
LNU
GDO
GUN
VTP
ATQ
OCN
CGM
MTA
CMD
APZ
FTM
CBN
INF
SID
LCP
NKS
CEK
TPC
MIA
SAU
NTE
DAÑ
TUV
ZMN
KOP TZM CNC
NCM IZL VDD NIZ
MDP
CNI
SLM
CYA
MRP MAN
HRC
MZT
CEL
ZOC JAL
PBD
DOG ZAP
PRD
ELC
LAV
TTE
KNP
TIC
SAM
CMO
CRE
MID CTS
TMD
ESA
VAD
PKP
HBK
PCN
TIU
PYU
XUL
INS
SLC
JDN
ALD
TCL
BNP
KBL
KAL
SBY
CNR
DBC
LRP
QMD
LRA
SUR
TAM
OJP VRD
ATD
ATE
MZL
MAX
PJU
HAA
PTE
MDA
PRI
CRL
VIL
PAE
TMO
QRP
CRP
UPT
CPT
TAP
COL
ALT
ANP
QRO
IRA
ABA
ATN
MAM
SPA
SIP
GUD
APR
MND
ATC
CPY
LNC
TSN
GDU
EAA
SLP
VDR
AGT
LNT
APT
TED
GUE
SLD
LPI
AGM
CAB
LVI
LAJ
EPS
TDS
CAD
TEC
CHR
VGR
HBL
INV
HUI
CED
CAL
DGS
MZD
SNT
SJC
CCL
PMY
BLE
LPZ
ETR
MTM
MTY
PZA
PEL TRS
DGD
AER
RIB
ESC
LED
LOU
REY
FAM
VDG
AND
GPL
DOM
(U.S.A.)
C.P.L
AMI
CDY
CDD
VHN
MCD LRS
CTE
PEA
TOM
KLV
LAT
JUI
MPS
MMT
OXP
SSB
JUD
ANG
PMU´S
TPH
EMM/Jun-2009
REGIONAL DATA CONCENTRATOR
ONLINE LOCAL MONITORING SYSTEM
STAGES OF THE PROJECT
PHASOR
MEASUREMENT
UNIT
(PMUS)
WIDE
AREA
MEASUREMENT
(WAMS)
PHASOR
MEASUREMENT AND
CONTROL UNIT
(PMCU)
+
PLC
WIDE AREA
CONTROL & PROTECTION SYSTEM
(WAC&PS)
AUTOMATIC GENERATION
SHEDDING SCHEME (AGSS)
APPLICATION PRINCIPLE
XXL/2
/3
L
SYSTEM A
α
SYSTEM B
α1 α23
∂ang=α─α1
∂ang=α─α2
∂ang=α─α3
CHICOASEN-ANGOSTURA AGSS
MUX
MUX
FIBER OPTIC
EIA-232
POWER
FLOW
EIA-232
150 MW
V1
F1
P1, Q1
P2, Q2
α
ΣP=P1+P2
AGSS CONDITIONS
• VOLTAGE
• FREQUENCY
• 10 ≤ ΣP ≤800
• 52
• ANG = A─B
ΣP=P1+P2
V2
F2
P1, Q1
P3, Q3
α1
ANGLE DIFFERENCE CALCULATION FOR DOUBLE
CONTINGENCY WITHOUT AGSS OPERATION
180
160
140
DEGREES
120
100
80
60
40
20
0
– 20
0
0 .2
0 .4
0 .6
SECONDS
0 .8
1 .0
1 .2
ANGLE DIFFERENCE CALCULATION FOR DOUBLE
CONTINGENCY WITH AGSS OPERATION
30
25
20
DEGREES
15
10
5
0
–5
– 10
– 15
– 20
0
1
2
3
SECONDS
4
5
6
ANGLE DIFFERENCE MEASUREMENTS
BETWEEN CHICOASEN AND ANGOSTURA
ANGLE DIFFERENCE CALCULATIONS
AND MEASUREMENTS OF THREE DIFFERENT LINE
TRIPS
VOLTAGE MAGNITUDE MEASUREMENTS
AT CHICOASEN AND ANGOSTURA (A3030)
408.0
407.5
CHICOASEN
ANGOSTURA
407.0
406.5
KV
406.0
405.5
405.0
404.5
404.0
CIRCUIT TRIP
MMT-A3030-ANG
403.5
CIRCUIT CLOSE
MMT-A3030-ANG
403.0
0
50
100
150
200
250
300
SAMPLES (20 SAMPLES/SECOND)
350
400
450
500
VOLTAGE MAGNITUDE MEASUREMENTS
AT CHICOASEN AND ANGOSTURA (A3130)
408.0
CHICOASEN
407.5
ANGOSTURA
407.0
406.5
KV
406.0
405.5
405.0
CIRCUIT TRIP
MMT-A3130-SSB
404.5
CIRCUIT CLOSE
MMT-A3130-SSB
404.0
403.5
403.0
0
50
100
150
200
250
300
SAMPLES (20 SAMPLES/SECOND)
350
400
450
500
VOLTAGE MAGNITUDE MEASUREMENTS
AT CHICOASEN AND ANGOSTURA (A3T60)
408.0
CHICOASEN
ANGOSTURA
407.5
407.0
406.5
406.0
KV
CIRCUIT CLOSE
ANG-A3T60-SSB
CIRCUIT TRIP
ANG-A3T60-SSB
405.5
405.0
404.5
404.0
403.5
403.0
0
50
100
150
200
250
300
SAMPLES (20 SAMPLES /SECOND)
350
400
450
500
AGSS FREQUENCY MEASUREMENT
DURING EXTERNAL FAULT CONDITIONS
60.3
60.25
60.2
HZ
60.15
60.1
60.05
60.0
ANG
MMT
59.95
0
100
200 300
400
500
600
700
800
900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
SAMPLES (20 SAMPLES/SECOND)
AGSS VOLTAGE MAGNITUDE MEASUREMENT
DURING EXTERNAL FAULT CONDITIONS
415
414
413
412
411
410
KV
409
408
407
406
405
404
403
402
ANG
401
MMT
400
0
100
200 300
400
500
600
700
800
900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
SAMPLES (20 SAMPLES/SECOND)
AGSS ANGLE DIFFERENCE MEASUREMENT
DURING EXTERNAL FAULT CONDITIONS
3
2.5
DEGREES
2
1.5
1
0.5
0
0
100
200 300
400
500
600
700
800
900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
SAMPLES (20 SAMPLES/SECOND)
AGSS DURING INTERNAL FAULT
CONDITIONS
15:16:39:100 SINGLE PHASE TRIP AND OPEN POLE PERIOD INITIATE
15:16:39:800 SINGLE PHASE RECLOSE WITH PERMANENT FAULT
15:16:39:900 THREE PHASE TRIP LINE ANG - MMT OPEN
MMT
SSB
ANG
AGSS VOLTAGE MAGNITUDE MEASUREMENT
DURING INTERNAL FAULT CONDITIONS
AGSS FREQUENCY MEASUREMENT
DURING INTERNAL FAULT CONDITIONS
AGSS ANGLE DIFFERENCE MEASUREMENT
DURING INTERNAL FAULT CONDITIONS
ANGLE DIFFERENCE CALCULATIONS
FOR DOUBLE LINE TRIPS
CONCLUSIONS

PMCUS WILL REDUCE OPERATING
TIME AND IMPROVE RELIABILITY IF
COMPARED WITH AGSS´S BASED ON
TRADITIONAL MEASUREMENT AND
PLCS FUNCTIONS

SYNCHRONIZED
ANGLE-DIFFERENCE
MEASUREMENTS PROVIDE RELIABLE
INFORMATION TO DETECT NETWORK
TOPOLOGY CHANGES WITH MINIMUM
COMMUNICATION REQUIREMENTS
CONCLUSIONS

FAST COMMUNICATIONS CHANNELS
AND AVAILABLE PMCUS ALLOW THE
ANGLE-DIFFERENCE-BASED AGSS TO
OPERATE IN LESS THAN 200 MS.

SYNCHRONIZED
MEASUREMENT
MESSAGE RATE AFFECTS THE AGSS
OPERATING TIME. MESSAGE RATES OF
10 OR 20 MESSAGES PER SECOND IS STILL
VERY GOOD TO AVOID TRANSIENT
STABILITY PROBLEMS IN THE REGION.
CONCLUSIONS

RECORDS
OF
ANGLE
DIFFERENCE
MEASUREMENTS
FOR
SINGLE
LINE
CONTINGENCIES VALIDATE MEASUREMENTS AND
SIMULATION MODELS. AGSS MUST OPERATE
ONLY WHEN TWO PARALLEL LINES ARE LOST IN
SIMULTANEOUS OR SEQUENTIAL FORM