Transcript Document
ANGULAR DIFFERENCE PROTECTION SCHEME USING PMUS ENRIQUE MARTINEZ MARTINEZ COMISION FEDERAL DE ELECTRICIDAD MEXICO ACTUAL TRENDS IN DEVELOPMENT OF POWER SYSTEM PROTECTION AND AUTOMATION 7-10 SEPTEMBER 2009, MOSCOW INTRODUCTION GENERATION-LOAD BALANCE TRADITIONAL SPECIAL PROTECTION SCHEMES UNDERFREQUENCY LOAD SHEDDING UNDERVOLTAGE LOAD SHEDDING GENERATOR SHEDDING THE QUESTION IS … SYSTEM SEGREGATION MAINTAIN SYSTEM INTEGRITY CFE SYNCHROPHASOR MEASUREMENT SYSTEM CFE PMU INSTALLATIONS INTERCONNECTED NATIONAL SYSTEM NORTH BAJA CALIFORNIA SYSTEM SOUTH BAJA CALIFORNIA SYSTEM PMUS APPLICATION LEVELS INTERCONNECTED NATIONAL SYSTEM AREAS AREA INTERCONNECTIONS SPS MAIN SUBSTATIONS AND POWER PLANTS U.S.A. (MIGUEL) U.S.A. (IMPERIAL V.) OZA RINNZICROCTY RUM TJI PAP PJZ TEK STB APD RZC ROA WIS NEP MXI CPU CPT CIP PMU´S AND AGSS´S LOCATION (U.S.A.) AZCARATE. (U.S.A.) DIABLO HGO CSC CHQ CPD SSA CNN ICA STA VJZ REA SCN NRI SYC SVE TRI KON SAF HLT PLD LCD HLC NGC LCF MCZ SQN CUN HLI AUA CHD SMN PNE PGD COT AVL FVL REC NAV HCP COC CBD ENO PNO NUR CGD HTS CID MON NUL LAM FRO LMD LRO OJC CPR ADC SGD PES TPO NIC GMD APC RAP INS CUT SCP VIO PUP GAO ZCD AGS CDA ZPP LNU GDO GUN VTP ATQ OCN CGM MTA CMD APZ FTM CBN INF SID LCP NKS CEK TPC MIA SAU NTE DAÑ TUV ZMN KOP TZM CNC NCM IZL VDD NIZ MDP CNI SLM CYA MRP MAN HRC MZT CEL ZOC JAL PBD DOG ZAP PRD ELC LAV TTE KNP TIC SAM CMO CRE MID CTS TMD ESA VAD PKP HBK PCN TIU PYU XUL INS SLC JDN ALD TCL BNP KBL KAL SBY CNR DBC LRP QMD LRA SUR TAM OJP VRD ATD ATE MZL MAX PJU HAA PTE MDA PRI CRL VIL PAE TMO QRP CRP UPT CPT TAP COL ALT ANP QRO IRA ABA ATN MAM SPA SIP GUD APR MND ATC CPY LNC TSN GDU EAA SLP VDR AGT LNT APT TED GUE SLD LPI AGM CAB LVI LAJ EPS TDS CAD TEC CHR VGR HBL INV HUI CED CAL DGS MZD SNT SJC CCL PMY BLE LPZ ETR MTM MTY PZA PEL TRS DGD AER RIB ESC LED LOU REY FAM VDG AND GPL DOM (U.S.A.) C.P.L AMI CDY CDD VHN MCD LRS CTE PEA TOM KLV LAT JUI MPS MMT OXP SSB JUD ANG PMU´S TPH EMM/Jun-2009 REGIONAL DATA CONCENTRATOR ONLINE LOCAL MONITORING SYSTEM STAGES OF THE PROJECT PHASOR MEASUREMENT UNIT (PMUS) WIDE AREA MEASUREMENT (WAMS) PHASOR MEASUREMENT AND CONTROL UNIT (PMCU) + PLC WIDE AREA CONTROL & PROTECTION SYSTEM (WAC&PS) AUTOMATIC GENERATION SHEDDING SCHEME (AGSS) APPLICATION PRINCIPLE XXL/2 /3 L SYSTEM A α SYSTEM B α1 α23 ∂ang=α─α1 ∂ang=α─α2 ∂ang=α─α3 CHICOASEN-ANGOSTURA AGSS MUX MUX FIBER OPTIC EIA-232 POWER FLOW EIA-232 150 MW V1 F1 P1, Q1 P2, Q2 α ΣP=P1+P2 AGSS CONDITIONS • VOLTAGE • FREQUENCY • 10 ≤ ΣP ≤800 • 52 • ANG = A─B ΣP=P1+P2 V2 F2 P1, Q1 P3, Q3 α1 ANGLE DIFFERENCE CALCULATION FOR DOUBLE CONTINGENCY WITHOUT AGSS OPERATION 180 160 140 DEGREES 120 100 80 60 40 20 0 – 20 0 0 .2 0 .4 0 .6 SECONDS 0 .8 1 .0 1 .2 ANGLE DIFFERENCE CALCULATION FOR DOUBLE CONTINGENCY WITH AGSS OPERATION 30 25 20 DEGREES 15 10 5 0 –5 – 10 – 15 – 20 0 1 2 3 SECONDS 4 5 6 ANGLE DIFFERENCE MEASUREMENTS BETWEEN CHICOASEN AND ANGOSTURA ANGLE DIFFERENCE CALCULATIONS AND MEASUREMENTS OF THREE DIFFERENT LINE TRIPS VOLTAGE MAGNITUDE MEASUREMENTS AT CHICOASEN AND ANGOSTURA (A3030) 408.0 407.5 CHICOASEN ANGOSTURA 407.0 406.5 KV 406.0 405.5 405.0 404.5 404.0 CIRCUIT TRIP MMT-A3030-ANG 403.5 CIRCUIT CLOSE MMT-A3030-ANG 403.0 0 50 100 150 200 250 300 SAMPLES (20 SAMPLES/SECOND) 350 400 450 500 VOLTAGE MAGNITUDE MEASUREMENTS AT CHICOASEN AND ANGOSTURA (A3130) 408.0 CHICOASEN 407.5 ANGOSTURA 407.0 406.5 KV 406.0 405.5 405.0 CIRCUIT TRIP MMT-A3130-SSB 404.5 CIRCUIT CLOSE MMT-A3130-SSB 404.0 403.5 403.0 0 50 100 150 200 250 300 SAMPLES (20 SAMPLES/SECOND) 350 400 450 500 VOLTAGE MAGNITUDE MEASUREMENTS AT CHICOASEN AND ANGOSTURA (A3T60) 408.0 CHICOASEN ANGOSTURA 407.5 407.0 406.5 406.0 KV CIRCUIT CLOSE ANG-A3T60-SSB CIRCUIT TRIP ANG-A3T60-SSB 405.5 405.0 404.5 404.0 403.5 403.0 0 50 100 150 200 250 300 SAMPLES (20 SAMPLES /SECOND) 350 400 450 500 AGSS FREQUENCY MEASUREMENT DURING EXTERNAL FAULT CONDITIONS 60.3 60.25 60.2 HZ 60.15 60.1 60.05 60.0 ANG MMT 59.95 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 SAMPLES (20 SAMPLES/SECOND) AGSS VOLTAGE MAGNITUDE MEASUREMENT DURING EXTERNAL FAULT CONDITIONS 415 414 413 412 411 410 KV 409 408 407 406 405 404 403 402 ANG 401 MMT 400 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 SAMPLES (20 SAMPLES/SECOND) AGSS ANGLE DIFFERENCE MEASUREMENT DURING EXTERNAL FAULT CONDITIONS 3 2.5 DEGREES 2 1.5 1 0.5 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 SAMPLES (20 SAMPLES/SECOND) AGSS DURING INTERNAL FAULT CONDITIONS 15:16:39:100 SINGLE PHASE TRIP AND OPEN POLE PERIOD INITIATE 15:16:39:800 SINGLE PHASE RECLOSE WITH PERMANENT FAULT 15:16:39:900 THREE PHASE TRIP LINE ANG - MMT OPEN MMT SSB ANG AGSS VOLTAGE MAGNITUDE MEASUREMENT DURING INTERNAL FAULT CONDITIONS AGSS FREQUENCY MEASUREMENT DURING INTERNAL FAULT CONDITIONS AGSS ANGLE DIFFERENCE MEASUREMENT DURING INTERNAL FAULT CONDITIONS ANGLE DIFFERENCE CALCULATIONS FOR DOUBLE LINE TRIPS CONCLUSIONS PMCUS WILL REDUCE OPERATING TIME AND IMPROVE RELIABILITY IF COMPARED WITH AGSS´S BASED ON TRADITIONAL MEASUREMENT AND PLCS FUNCTIONS SYNCHRONIZED ANGLE-DIFFERENCE MEASUREMENTS PROVIDE RELIABLE INFORMATION TO DETECT NETWORK TOPOLOGY CHANGES WITH MINIMUM COMMUNICATION REQUIREMENTS CONCLUSIONS FAST COMMUNICATIONS CHANNELS AND AVAILABLE PMCUS ALLOW THE ANGLE-DIFFERENCE-BASED AGSS TO OPERATE IN LESS THAN 200 MS. SYNCHRONIZED MEASUREMENT MESSAGE RATE AFFECTS THE AGSS OPERATING TIME. MESSAGE RATES OF 10 OR 20 MESSAGES PER SECOND IS STILL VERY GOOD TO AVOID TRANSIENT STABILITY PROBLEMS IN THE REGION. CONCLUSIONS RECORDS OF ANGLE DIFFERENCE MEASUREMENTS FOR SINGLE LINE CONTINGENCIES VALIDATE MEASUREMENTS AND SIMULATION MODELS. AGSS MUST OPERATE ONLY WHEN TWO PARALLEL LINES ARE LOST IN SIMULTANEOUS OR SEQUENTIAL FORM