The Bootstrap’s Finite Sample Distribution An Analytical Approach

Download Report

Transcript The Bootstrap’s Finite Sample Distribution An Analytical Approach

1
The Bootstrap’s Finite Sample Distribution
An Analytical Approach
Lawrence C. Marsh
Department of Economics and Econometrics
University of Notre Dame
Midwest Econometrics Group (MEG)
Northwestern University
October 15 – 16, 2004
2
This is the first of three papers:
(1.) Bootstrap’s Finite Sample Distribution ( today !!! )
(2.) Bootstrapped Asymptotically Pivotal Statistics
(3.) Bootstrap Hypothesis Testing and Confidence Intervals
3
traditional approach in econometrics
Analytical
problem

Analogy principle (Manski)
GMM (Hansen)

Empirical
process
approach used in this paper
Empirical
process

Bootstrap’s
Finite Sample Distribution

Analytical
solution
4
bootstrap procedure
Start with a sample of size n: {Xi : i = 1,…,n}
Bootstrap sample of size m:
m < n
or
m = n
or
{Xj*: j = 1,…,m}
m > n
Define Mi as the frequency of drawing each Xi .
5
m
X
j 1
*
j

n
M X
i 1
i
i
 1 m *
1 n



EM   X j   EM   Mi X i 
 m i 1

 m j 1 
 1 m *
1 n

VarM   X j   VarM   Mi X i 
 m i 1

 m j 1 
..
.
6
EM M i  
 
m
n
EM M
2
i
m m  1  n m

n2
2
 1 m
 
*
EM   f X j   

m
 j 1
M 1 ...  M n  m
 
 




M 1 ...  M n  m
n
2
2




M
f
X

 i
i
i 1
for i  k
2
m
1

n
m!
  f X j* 
m
 ( M !...M !)
j

1
1
n


 
m
2
n  m m!
1

  Mi f  X i 
 m i 1
 ( M 1!... M n !)
n
M 1 ...  M n  m


 1
 m2


m2  m
EM M i M k  
n2
2
m2


m
n
m!





M
M
f
X
f
X

i
k
i
k
 ( M 1!... M n !)
i k


 n2 n 


 2 


7
Applied Econometrician:
The bootstrap treats the original sample
as if it were the population and induces
multinomial distributed randomness.
 1 m

*
VarM   f X j 
 m j 1

 
n 1
2
mn
n
  f  X 
i 1
i
2
=
2

2
mn
 n2 n 


 2 


 f X  f X 
ik
i
k
8
Econometric theorist: what does this buy you?
Find out under joint distribution of
bootstrap-induced randomness and
randomness implied by the original
sample data:
1 m

*
VarM , X   f X j 
 m j 1

  =
1
n2
2
 2
n
n
Var  f  X 
i 1
X
i

n 1 n
2





E
f
X
X
i
2 
m n i 1
 n2 n 


 2 


 Cov  f  X , f  X 
ik
X
i
k
2

m n2

 n2 n 


 2 


 E  f  X  f  X  .
ik
X
i
k
9
Applied Econometrician:
1 m
VarM   X j*  X
 m j 1


2
 n 1

2
m
n

 X
n
i 1
i
X

4
2

m n2

1
n2

2
n2
Var X
i 1
 n2 n 


 2 



ik
X

i
X

Cov X X i  X
2

ik
 
f X

n
 X
=

n 1 n

E Xi  X
2  X
m n i 1
 , X
2
k
X
i
X
 X
2
X
k

2
2

For example,
Econometric theorist:
1 m
2
*
VarM , X   X j  X 
 m j 1

 n2 n 


 2 



2

2
m n2
 n2 n 


 2 



ik
*
j

4

 X X
*
j

2


EX X i  X
 X
2
k
X

The Wild Bootstrap
10
Multiply each boostrapped value by plus one or minus one
each with a probability of one-half (Rademacher Distribution).
Use binomial distribution to impose Rademacher distribution:
PWi | M i 
 M i  Wi
M i Wi
  0.5 1  0.5
 Wi 
2
2
 1 m

n


1
 
*
EM EW |M   f X j    EM EW |M   Wi  M i  Wi  f  X i  
 m j 1
 
 m i 1
 
 
Wi = number of positive ones out of Mi which, in turn,
is the number of Xi’s drawn in m multinomial draws.
11
The Wild Bootstrap
Applied Econometrician:
 1

*
VarW , M   f X j 
 m j 1

m
 
n
=

1
2
 f  X i 

m n i 1

Econometric Theorist:
n
 1 m


1
*
VarW , M , X   f X j  
VarX  f  X i 

 m j 1
 m n i 1
 
under zero mean assumption
12
n
1 m

1

*
q   f X j   q   M i f  X i 
 m i 1

 m j 1

 
 1 m

*
EM q   f X j 
  m j 1

 1 m

*
VarM q   f X j 
  m j 1

 
 1 n

 E M  q   M i f  X i  

  m i 1
 
 1 n

 VarM q   M i f  X i 

  m i 1
.
.
.
13
  E X 
where X is a p x 1 vector.
o  g  
nonlinear function of .
X i : i  1,..., n
1 n
X   Xi
n i 1
X
*
j

: j  1,..., m
1 m *
X  Xj
m j 1
*
Horowitz (2001) approximates the bias of  n  g  X 
as an estimator of o  g   for a smooth nonlinear function g
*
n
B



1
*
*
'

EM X  X G2 X  X  X
2

 
 On
2
almost surely, where G2 X  is matrix of second partial derivatives of g.
14
*
'
EM X G2 X  X 
 '

1
*
 EM  X G2 X   X j 
m
j 1


m
1
 '

 EM  X G2 X   Mi Xi 
m i 1


n
Horowitz (2001) uses bootstrap simulations to approximate
the first term on the right hand side.
*
n
B



1

EM X *  X 'G2 X  X *  X
2

15
 
 O n 2
Exact finite sample solution:
Bn* =
 n2 n 




 2 





1  n  m  1 n
2
m

1
'
X i ' G2 X X i 
X i ' G2 X  X k  X G2 X  X 



2
2
2  mn
mn
i 1
ik



+ On
2

16
Separability Condition
Definition:
*
Any bootstrap statistic, n , that is a function of the elements
of the set {f(Xj*): j = 1,…,m} and satisfies the separability condition

  f X : j  1,..., m   g M  h f  X 
n
*
n
*
j
i 1
i
where g(Mi ) and h( f(Xi )) are independent functions
and where the expected value EM [g(Mi)] exists,
is a “directly analyzable” bootstrap statistic.
i
17
X is an n x 1 vector of original sample values.
X * is an m x 1 vector of bootstrapped sample values.
X * = HX where the rows of H are all zeros except
for a one in the position corresponding to
the element of X that was randomly drawn.
EH[H] = (1/n) 1m1n’
where 1m and 1n are column vectors of ones.
Taylor series expansion
m* =
m* = g(X *) = g(HX )
Setup for empirical process:
Xo* = Ho X
g(Xo*) + [G1(Xo*)]’(X *Xo*) + (1/2) (X *Xo*)’[G2(Xo*)](X *Xo*) + R *
Taylor series expansion
m* = g(X *) = g(HX )
Taylor series:
m* =
18
X * = HX where the rows of H are all zeros
except for a one in the position corresponding
to the element of X that was randomly drawn.
Xo* = Ho X
Ho = EH[H] = (1/n) 1m1n’
Setup for analytical solution:
g((1/n)1m1n’X )
+ [G1((1/n)1m1n’X )]’(H(1/n)1m1n’) X
+ (1/2)X‘(H(1/n)1m1n’)’[G2((1/n)1m1n’X )](H(1/n)1m1n’) X
+ R*
Now ready to determine exact finite moments, et cetera.
1
ˆ
'
   X X  X 'Y
 Y  X̂
e
e
{ e1 , e2 , . . ., en }
e {e ,e
*
1
*
e = ( In – X (X’X)-1X’)
*
2
, . . ., e }
*
n
A = ( In – (1/n)1n1n’ )
*
ˆ
Y  X  Ae
*
1
ˆ
*
'
  X X  X 'Y *
}
19
e* = H e
EH[H] = (1/n) 1n1n’
No restrictions
on covariance
matrix for errors.
20
Applied Econometrician:
 
CovH | ̂ *
=

 
1
1
1
'
'
 X X  X A   I n  e' e   2 1n1n'  I n  1n' 2 vecee'
n
n
.


1
'


AX
X
X


1
1
1
 2  X ' X  X ' A 1n1n' ee' 1n1n' A X  X ' X 
n
where
A=
In
A = ( In – (1/n)1n1n’ )
or
so
A1n1n’ = 0 and 1n1n’A = 0
21
Econometric theorist:
Cov, H
X ' X 
1

+


1 ' 1
1 '

1
X '  I n  1n1n    tr   2 1n 2 vec    X  X ' X 
n
n
 n


No restrictions on E '
where
 
 
*
ˆ
  Cov ˆ



1
1
'
'
'
I n  X  X X  X E' I n  X  X X  X '

22
This is the first of three papers:
 (1.) Bootstrap’s Finite Sample Distribution
( today !!! )
basically
(2.) Bootstrapped Asymptotically Pivotal Statistics
done.
almost (3.) Bootstrap Hypothesis Testing and Confidence Intervals
done.
Thank you !