system operation

Download Report

Transcript system operation

KURSUS PENGENALAN KEPADA PERKHIDMATAN MEKANIKAL DALAM BANGUNAN

AN INTRODUCTION TO FIRE FIGHTING DESIGN

CARBON DIOXIDESYSTEM

CONTENTS

1.

2.

3.

4.

5.

6.

7.

8.

9.

INTRODUCTION DESIGN STANDARDS SYSTEM OPERATION CARBON DIOXIDE CYLINDERS CARBON DIOXIDE CONTROL PANEL DISCHARGE NOZZLE AUTOMATIC DETECTORS AND ALARM BELLS PIPEWORK AND FITTINGS WARNING SIGNS

AUTOMATIC CARBON DIOXIDE SYSTEM

1.

Consists of CO2 cylinders, steel piping, discharge nozzles, heat/smoke detectors, gravity shutter, alarm system etc.

2.

Discharged after a time delay upon detection of fire.

3.

Usually for Transformer room, Switchroom, Standby Generator room and High Switch Gear room.

DESIGN STANDARDS

In the UBBL (1984), the By-laws relating to Carbon Dioxide is By-laws 235 and the applicable standard is: NFPA 12

SYSTEM OPERATION

1.

2.

3.

4.

5.

6.

The protected area should be flooded with CO2, seconds, adjustable up to 60 seconds.

Total discharge shall not exceed 1 minute.

For deep seated total discharge shall not exceed 7 minutes or 30% discharge within 2 minutes.

Supply Voltage 240V A.C, 50 Hz.

A 24V D.C standby battery in case of mains voltage failure.

SYSTEM OPERATION

7.

The space protected by two or more heat or smoke detectors.

8. The indicator light on the control panel should illuminate and audible warning sounded via alarm bell.

1.

CARBON DIOXIDE CYLINDERS

2.

3.

4.

5.

Where more than three cylinders are required, a pilot cylinder should be provided to activate the discharge from each cylinder.

1.

CARBON DIOXIDE CONTROL PANEL

Should indicate the operation of the system hazards to personnel, or failure of any supervised device.

2.

Complying with MS 1404 and BS 7273.

3.

Alarm should be provided to give warning of a discharge.

4.

A device should be incorporated into the system to shut down any exhaust fans and activate solenoid operated curtains across louvres before discharge.

DISCHARGE NOZZLE

1.

The discharge nozzle should consists of the orifice and any associated horn, shield or baffle.

2.

Discharge orifices should be of corrosion resistant metal.

3.

Permanenrly marked to identify the nozzle and to show the equivalent shield orifice diameter regardless of shape.

4.

Discharge nozzle should be provided with frangible disc

Automatic Detector and Alarm Bells

1.

The Automatic detection is usually by means of either heat or smoke detectors.

2.

Should be resistant to corrosion.

3.

The alarm bells should produce an alarm at least 65dBA or 5dBA.

4.

The bell should be of the trembling (not single stroke).

WARNING SIGNS

1.

Warning and instruction signs should be installed at entrances to and inside protected areas at prominent positions.

PIPE WORK AND FITTING

1.

The material of piping and fittings must be of non combustible heat resisting. 2.

Maintain its own shape in room temperature during the outbreak of fire.

3.

All piping should be of API Schedule 40/80 steel pipe.

SAMPLE CALCULATION FOR CO2 SYSTEM

PROJECT ROOM NAME : : NEW MORTUARY FOR PENANG HOSPITAL STANDBY-GENERATOR ROOM

STAND BY–GENERATOR ROOM

Area = Volume = 5.5 X 6.0m

5.5 x 6.0 x 4.15m

Nozzle coverage area Nos of nozzle required Flooding Factor Design Concentration Actual weight of CO¸ = = = = = = = = = 33m² 137 m³ 28.28m² 33/28.28 1.17 ~ 2 nos.

1.35kg/m³ 50% 137m³x1.35kg/m³ 185kg Nos of cylinder = = 185kg/45kg 5 nos Consider 30% volume of C0¸ to be used = = 0.3x137m³ 41m³

Design manual based on desired flow rate Therefore flow rate for 2 mins Q = 41m³ (exp.30°C) 0.56m³/kg = = @ 2mins = 73.2kg

2min Time of discharge of CO² at volume = = Pipe sizing for flow rate, Pipe size Q = = 0.56m³/kg @ 30°C 73.2kg

37kg/mins 185kg 37kg/min = 37kg/mins 20mm 5mins

SWITCH – BOARD ROOM

Area Volume Nozzle coverage area = = 5.5x4.5 5.5x4.5x4.15

= = = 25m² 103m³ 28.28m² 0.9 ≈ 1 no.

Nos Nozzle Flooding Factor weight CO² Nos cylinder 30% Volume Q = = = = = = 56kg/2mins @ 2mins 25/28.28 1.35kg/m³ @ 50% 139kg 139kg/45kg 03x103m³ = 31m³/0.56m³/kg (expansion 30°C) @ 0.56m³ = = = = Time Discharge Pipe sizing Q = 139kg/28kg/min = = = 3nos 31m³ 28kg/mins 5 min 28kg/mins 20mm

SCHEMATIC DRAWING FOR CO2 SYSTEM