童培庆 - 兰州大学物理学院计算物理与复杂系统研究所

Download Report

Transcript 童培庆 - 兰州大学物理学院计算物理与复杂系统研究所

一维非均匀系统的电子性质和
量子相变
童培庆
南京师范大学物理
科学与技术学院
[email protected]
Contents
﹡一维无序和非均匀系统中的电子能谱和波
函数性质
﹡一维无序和非均匀量子自旋链的量子相变
能带论
单电子
理论



Born-Oppenheimer近似
单电子近似(Hartree-Fock)
周期势场中的单电子Schrodinger方程





2 2
H  (r )  [
  V (r )] (r )   (r )
2m
 

V (r  Rn )  V (r )
Bloch定理(扩展态)
 
 

ik Rn
 (r  Rn )  e  (r )



 

ik r
 (r )  e u(r ) ; u(r  Rn )  u(r )
Anderson Localization (局域化)
Cite 4325+ (from APS publication)
Anderson Localization (局域化)
Scaling Theory of Localization
Cite 3057+ (from APS publication)
d>2, 扩展态、局域态
迁移率边(mobility edge)
无序引起的金属绝缘体相变
metal-insulator transition
d=2, 临界情况(是否存在扩展态?)
d=1, 所有的本征态都是局域态
mobility
edge
1D Nonuniform Systems
紧束缚近似(二次量子化形式)
H  Vncn cn 
n





c
t
(
c
c

h
.
c
.)
 n n 0 Vn n   tmn m   n
 mn m n
mn 
m
n
一维均匀势场中的电子能谱和本征态
V0 n  t ( n 1  n 1 )   n
  V0  2t cos(k )  n 
1
N
一维非均匀势场中的电子能谱和本征态方程
Vn n  tn,n1 n1  tn,n1 n1   n
问题:如果不是完全无序的一维
系统中是否存在扩展态或
其他形式的本征态?
ikn
e

k
Example 1: Harper or Aubry-Andre Model
S.Aubry & C Andre, Proc. Israel Phys. Soc 1979
Harpermodel
Vn   cos(2n)
 irrational
t n ,n 1  t n ,n 1  1
  2 扩展态
  2 临界态(分形)
  2 局域态
1159+ (from APS publication)
Example 2:Slowly Varying Potential
Vn   cos(n )
Vn   cos(n )
当1    0 时,
  2,所有态是扩展的;
  2, Ec  (2 - )
 2
等价于无序势,所有态是局域态
1    0 存在扩展态和mobilityedge
Example 2:Slowly Varying Potential
Example 3:General Quasiperiodic Potential
局域态
Vn   tanh(2n) / tanh A
扩展态
  ( 5  1) / 2
局域态
当A较小时,随增大,
先从带中间出现局域态
Example 4:Random Dimer Model
420+ (from APS publication)
P.Phillips & H.-L. Wu, “Localization and its absence:
a new metallic state for conducting polymers”
Science 252, 1805 (1991)
V2 n  V2 n 1  

  a
 b
 2  a  b  2
概率p
概率1  p
N 个态是扩展的
 a   b  2
波包是正常扩散的
a  b  2
波函数是局域的
Example 5:Long-Range Correlated Disorder
203+ (from APS publication)
213+ (from APS publication)
  2 (1 ) 
2nk
Vn   k
 k )
 cos(
N
N
k 1 


S (k )  1 / k 
N /2
VnVnk   02 (k )
1/ 2
RG和数值计算发现
  2 存在扩展态和迁移率边
应用二维映射,在Vn  1情形下
l
1

 02 (  )

;  (  )  1  2  ( k ) cos(2 k )
8 sin 2 
k 1
对Harper模型和Slowly Varying
Potential
模型,得到一致的结果
构造具有迁移率边的势场
Example 6:Fibonacci Binary Potential
712+ (from APS publication)
434+ (from APS publication)
通过求解重整化群的
T raceMap
不动点,
分析了能谱和
M l 1  M l M l 1
波函数的标度性质,发
1
xl  TrM l
2
xl 1  2 xl xl 1  xl  2
现波函数既不是扩展的,


rl 1  T (rl )  (2xl xl 1  xl 2 , xl , xl 1 )
也不是 局域的,而是临
界的(Critical)
Experiments: Quasicrystals and Its Discovery
完整晶体
周期性
对称性
不存在5度对称轴
3157+ (from APS publication)
Dan Shechtman
2011 Chemistry
Experiments: Quasicrystals and Its Discovery
Linus Carl Pauling
1954 Chemistry
1962 Peace
郭可信
Tasi An-Pang
Quasicrystal
准晶
or
Twinned Crystal? 孪晶
长程序
准晶
没有周期性
Penrose Tiles
1D Quasiperiodic and aperiodic sequence
Fibonacci sequence
Fn1  Fn  Fn1
F0  F1  1
1,1,2,3,5,8,13,21,
Fn1
5 1


 0.618...
Fn
2
 A  AB

 BA
ABAABABA......
S n1  {S n , S n1}
S0  B, S1  A
Quasiperiodic and Aperiodic Sequences
General Fibonacci
sequence
 A  Ak B l

 BA
Fn1  kFn  lFn1
Thue-Morse
sequence
 A  AB

 B  BA
Fn  2n
Period-doubling
sequence
 A  AB

 B  AA
Fn  2n
Winding Number and
the classification of
sequences
N
M  
N
1
A
2
A
N
N
1
B
2
B

ln 2
 

ln 1

  0 1st class
  0 Marginal
  0 2nd class
1D Quasiperiodic and Aperiodic Superlattices
581+ (from APS publication)
1D 3-component Aperiodic Superlattices
1D k-component Aperiodic Superlattices
1D Frenkel-Kontorowa model
Y. Frenkel
基态 标准映射
K  Kc
Invariancecircle
K  Kc
Cantorus
K c  0.9716, Aubry T ransition
K  Kc
Harper
K  K c Fibonacci
Energy Spectra: Trace Maps
Vn n  n1  n1   n
 n 1 
 n 

  M (n)

 n 
 n 1 
   Vn  1

M (n)  
0
 1
M ( N )  M ( N ) M ( N  1)  M (1)
det M ( N )  1
M l  M ( Fl )
M l 1  M l M l 1
M l12  M l1M l 1
M l 1  M l12  ( M l  M l1 ) M l 1
M l  M l1  (TrM l ) I
TrM l  TrM l1
1
x l  TrM l
2
xl 1  2 xl xl 1  xl 2
1
xl  TrM l  1
2
Energy Spectra: degenerate perturbation theory
Energy Spectra: Degenerate Perturbation Theory
Wave Functions
描述波函数局域性的物理量
T ransmission coefficient
and Landauer resistance
Participation Ratio: PR   n4
n
T huolessExponentor
LyapnuovExponent:
N
1
'
 ( i ) 
 ln  i   j
N  1 j 1
 n  Aeikn  Beikn
  n 1
 n  Ceikn  Deikn
  2 cosk
n  N 1
TN  S 1M ( N )S
Fractal and Multifractal
Quantum Information
etc
 B C 
TN     
 A  D 
12 2
N
T
Fractals 分形
Cantor 集合
G. Cantor
B. Mandelbort
Self-similarity
自相似性
非整数的Hausdroff维数
Box counting
F.Hausdroff
Von Koch
Koch曲线
Multifractals 复分形
Arnold
tongue
1688+ (from APS publication)
Devil’s Staircase
Fractals Energy Spectra and Wave Functions
Fibonacci model
Energy spectra
427+ (from APS publication)
Centre of Band
HarperModel
at   2
Concurrence and Von Neumann Entropy
Von Neumann entropy
Concurrence
Harper
Slowly
Varying
potential
Dynamics and Diffusions
 2 (t )  t 
Fibonacci
Harper
Thue-Morse
Hyperdiffusion
 2 (t )   n2  n  t 
2
n
 0
1   0
 1
2   1
 2
 2
locaizat ion
subdiffusi on
Vn  0
n   L, L
normaldiffusion
superdiffusion
Period
ballistic
hyperdiffusion
Vn  0 n   N , L   L, N 
Split-operator method
Fibonacci
Disorder
Applications and Related Issuses
*其他的一维结构(分形结构、hierarchical结构)
*能级统计和量子混沌
*光学系统(矢量波)
*声学系统(声子晶体,张量波)
*相互作用的影响(Hubbard-Anderson模型)
*BEC和非线性相互作用
*拓扑超导体和量子计算
*生物系统(DNA)
* ‥‥‥
结论:这些一维的非均匀系统提供了研究非均匀
性对系统物理及其他性质影响的“标准模型”。
正如:两体模型、谐振子模型、Ising模型等
Quantum Phase Transitions
*Two kinds of phase transitions:
T >0, thermodynamical phase transition,
critical temperature
T=0, quantum phase transition,
parameters of the systems
* Mermin-Wigner Theorem:
there is no long-range order for
one-dimensional system at T>0
* One-dimensional quantum spin systems
a) Quantum Ising chain in a transverse field,
corresponding to 2D classical Ising model,
b) XY chain, pure quantum model,
no classical correspondence
c) Heisenberg model, general models
S.Sachdev
Quantum Ising and Anisotropic XY Chains
H 
1
{J n (1   ) nx nx1  J n (1   ) ny ny1  hn nz }

2 n
  1 quantum Ising model
 0
quantum XX model
0    1 anisotropic XY model
Jordan
Wigner
Jordan-Wigner transformation
an 
1 x
1
( n  i ny ), an  ( nx  i ny )
2
2
n 1
cn  exp(i  a a j )an
j 1

j
H   [cn Anm cm 
n,m
 nx  a n  a n ,
1
i
 ny  (a n  a n ),
 nz  2a n a n  1
n 1
c  a exp(i  a j a j )

n

n
j 1
1 
(cn Bnm cm  h.c.)] 
2
N (cN c1  cN c1  cN c1  cN c1 )[exp(i)  1]

1
( nz  1)

2
Quantum Ising and Anisotropic XY Chains

  h1

1J
 2 1
A
 0

 
  1 J N
 2

1
J1
2

0
 h2
1
 J2
2
1
 J2
2

 h3



0
0


1 
JN 
2 
0 


0 

 
 hN 


Equations of eigenvalues and eigenvectors
N
0

2
J1
0

2

JN


2
J1
0

2

0


2
J2

J2
0




0
0

1
[(k ,n   k ,n )cn  (k ,n   k ,n )cn ]

2 n
1
 k   [(k ,n   k ,n )cn  (k ,n   k ,n )cn ]
2 n
k 
Bogoliubov transformation





B





1
H    k ( k k  )
2
k 1



JN 
2 
0 


0 

 
0 

Quantum Ising and anisotropic XY Chains
v
Order parameters: Correlation function,
Magnetization
G1, 2
G1,3


C Lx  GS  1x 1x L GS 
GL,2
Mz  
 G1, L 1


G L ,3  G L , L 1
1
 Gn , n
N n
Gi , j   k ,i k ,i
k
Ising h  2 J , 0    1
Anisotropic   0,  2  h  2
Disorder and Quasiperiodic Quantum Ising Chains
无序和非均匀的结构对相变的影响
Harris判据:
•
满足Harris判据,无序不影响原系统的相变行为、无序是 RG下是
不相关的变量、物理量是自平均的。 3d经典Heisenberg模型
•
不满足Harris判据:
a, 系统在所有尺度上都是不均匀的,但不均匀度趋于有限的值,相变
对应于有限的无序强度的不动点、物理量是非自平均 。
3d经典Ising模型
(均匀)
(无序)
b, 系统中无序的相对强度在粗粒后无限地增大、相变对应于无限的无
序强度的不动点(被称为infinite-randomness critical points),在临界
点是指数标度,而不是Power-law的。物理量的分布是非常broad、
因此平均值是由rare events决定。
McMoy-Wu模型、1d无序的量子自旋链、1d无序的contact processes
Disorder Quantum Ising and XX Chains: RG
Energy Scale
202+ (from APS publication)
284+ (from APS publication)
345+ (from APS publication)
Quasiperiodic and aperiodic
quantum Ising chains
Luck-Harris criteria
J.M. Luck J. Stat. Phys.72 417 (1993)
  0 uniformquantum Ising chain
  0 disorder quantum Ising chain
Periodic anisotropic XY chains
周期2:J 2n  J , J 2n1  J
Quasiperiodic Anisotropic XY Chains
J A J B J A J A J B J A J B J A 
J A  J , J B  J
Quantum Lee-Yang Zeros
Concurrence and Quantum Phase Transition
Nature 416 608 (2002)
Cite: 1137
659+ (from APS publication)
Concurrence
Anisotropic
transition
Period
Von Neumann Entropy and Quantum Phase Transition
c:central
charge
809+ (from APS publication)
122+ (from APS publication)
random Ising
random Heisenberg
Ising c  c  1 / 2
XX
c  c 1
Period
Loschmidt Echos
198+ (from APS publication)
1st class
2nd class
disorder
Three-site Interaction
DM Interaction
Long-range Interaction
Nature Physics 1 53
Majarona Fermion and Topological Superconductor
n  V  2 cos(2n)
谢 谢!
Thank You