Matematika összefoglaló - BME Általános és Felsőgeodézia Tanszék
Download
Report
Transcript Matematika összefoglaló - BME Általános és Felsőgeodézia Tanszék
Matematika összefoglaló
A középiskolai tananyag vázlatos áttekintése,
gyakorló feladatok
Összeállította:
Deák Ottó mestertanár
Általános- és Felsőgeodézia Tanszék
Matematika konzultáció az I.
évfolyamnak
1
A bemutató vázlata
• Bemutatkozás, a konzultáció célja
• Tapasztalatok a matematika középiskolai
oktatásáról
• A középiskolai tananyag vázlatos és gyors
áttekintés
• A Matematika Tanszék mintadolgozatának
megoldása
• További mintapéldák megoldása
• Tanácsok a matematika tanulásához
Matematika konzultáció az I.
évfolyamnak
2
Bemutatkozás
• Deák Ottó mestertanár, BME Építőmérnöki Kar,
Általános- és Felsőgeodézia Tanszék
• ELTE TTK Matematikus diploma
• 37 év egyetemi oktatói tapasztalat
• Kb. 40 év matematika korrepetálás
középiskolásoknak
• Az I. évf. 10. tankör osztályfőnöke a 2014/2015.
tanévben
• Letöltés:
http://www.agt.bme.hu/staff_h/deak/Matek_
osszefoglalo.ppt
Matematika konzultáció az I.
évfolyamnak
3
Tapasztalatok I.
• A BME-n a matematika kiemelt fontosságú
alaptárgy
–
–
–
–
A felvételin döntő jelentősége van
Minden műszaki szaktárgy rá épül
Alapkészségeket és gondolkodásmódot tanít
Az egyik első szűrő a mérnökké válás folyamatában
• Szerepe és súlya a középiskolában
– Megnövekedett tananyag
– Csökkenő követelmények
– Az érettségi szerepe a tudás kontrolljában
Matematika konzultáció az I.
évfolyamnak
4
Tapasztalatok II.
• Az elmúlt évek tapasztalata az egyetemi
oktatásban:
– egyre alacsonyabb szintű matematika-ismeretekkel
érkeznek a hallgatók az I. évre;
– a lexikális ismeretek nagy része hiányzik („benne van
a függvény-táblában”!);
– gyenge számolási készség (számológépek
használata);
– a feladat-megoldási rutin hiánya (időhiány, más
elfoglaltság miatt);
– a felvételinél nem követelmény az emelt szintű
matematika érettségi.
Matematika konzultáció az I.
évfolyamnak
5
Következmények
• Az előbb felsorolt tényezők hatása az egyetemi
oktatásra:
– az alapozó tárgyakban magas bukási arány;
– az egyetemen gyakran középiskolai anyagot is
tanítani kell;
– a nem kimondottan matek-alapú tárgyakban is nagy
lemorzsolódás (pl. geodézia).
• Védekezési mechanizmusok az egyetem
részéről:
– matematika-felmérő íratása;
– felzárkóztató matematika-oktatás (középiskolás
anyag megtanítása).
Matematika konzultáció az I.
évfolyamnak
6
Matematika összefoglaló
• Tematikus összeállítás
• A középiskolai tananyag fontos fejezetei
• Alapfogalmak, definíciók, főbb képletek, fontos
tételek
• Nem pótolja a tankönyveket!
• Szerepe:
– gondolatébresztés,
– hiány-feltárás,
– figyelmeztetés.
Matematika konzultáció az I.
évfolyamnak
7
Matematikai jelölések az anyagban
• Szimbolikus jelölések az anyagban:
– : a megadott értékek közelítően egyenlőek
–
–
–
–
–
–
–
–
–
: minden olyan elem, amely…
: létezik olyan elem, amely…
: az előzőekből következik
: eleme a magadott halmaznak
: nem eleme a halmaznak
: a megadott halmaz részhalmaza (valódi)
: halmazok egyesítése (uniója)
: halmazok közös része (metszete)
: a megadott elemek összege
Matematika konzultáció az I.
évfolyamnak
8
Algebrai kifejezések I.
• Algebrai kifejezés fogalma, elemei
–
–
–
–
–
Számok
Változók
Paraméterek
Műveleti jelek
Zárójelek
• Számok a kifejezésekben, számítási élesség
–
–
–
–
Természetes számok
Egész számok
Racionális számok
Valós számok (irracionális szám fogalmával)
Matematika konzultáció az I.
évfolyamnak
9
Algebrai kifejezések II.
• Műveletek algebrai kifejezésekkel
–
–
–
–
Zárójelek szerepe, felbontása
Racionális kifejezések, műveletek törtekkel
Kiemelés, összevonás, egynemű kifejezés fogalma
Fontosabb algebrai azonosságok
a b 2 a 2 2 a b b 2
a b 3 a 3 3 a 2 b 3 a b 2 b 3
a b a b a 2 b 2
a n b n a b a n1 a n 2 b a b n2 b n1 , n N
a n b n a b a n1 a n 2 b a b n2 b n1 , n N , n páros
a n b n a b a n1 a n 2 b a b n 2 b n1 , n N , n páratlan
Matematika konzultáció az I.
évfolyamnak
10
Hatványozás
• Ismételt szorzás, egyszerűbb jelölés
• Azonosságok a definíció alapján, kiterjesztése
a n a a a
a n a m a nm
a a
n m
m n
a nm
an
nm
a
am
an
a n 1
a
0
a n a 0 n
p
q
a0
1
n n
a
a
a ap
q
a b n a n b n
n
an
a
n
b
b
Matematika konzultáció az I.
évfolyamnak
11
Gyökvonás
• Négyzetgyök, n-dik gyök fogalma
a x a x2
n
a y a yn
• Műveletek gyökös kifejezésekkel
a b a b
a
b
a
n
n m
a
b
an
a nm a
Matematika konzultáció az I.
évfolyamnak
12
Törtek gyöktelenítése
• Azonos átalakítások, a tört értéke nem változik
b a b
a
a
b
b b
b
b c a b c
a
a
bc
b c b c
b c
n
n b n1 n b n2 n c n c n1
a
a
b n c n b n c n b n1 n b n2 n c n c n1
a n b n1 n b n 2 n c n c n1
bc
Matematika konzultáció az I.
évfolyamnak
13
Oszthatóság I.
• Az egész számok körében értelmezzük:
– Osztandó, osztó, hányados, maradék fogalma
– Maradék nélküli és maradékos osztás
– Összetett és prím szám
• Az algebra alaptétele
Minden egész szám (sorrendtől eltekintve)
egyértelműen bontható fel prímszámok szorzatára
• Prímfelbontás előállítása
n p1k1 p2k2 prkr ,
pi prímszám
• Legnagyobb közös osztó, legkisebb közös
többszörös
Matematika konzultáció az I.
évfolyamnak
14
Oszthatóság II.
• Oszthatósági szabályok
–
–
–
–
–
–
–
–
–
–
2: páros számok
3: számjegyek összege osztható 3-mal
4: utolsó két jegy osztható 4-gyel
5: utolsó számjegy 0 vagy 5
6: páros és osztható 3-mal
7: 3-as csoportok váltakozó előjelű összege osztható 7-tel
8: utolsó három jegye osztható 8-cal
9: számjegyek összege osztható 9-cel
10: utolsó jegye 0
11: páros helyiérték összege – páratlan helyiérték összege
osztható 11-gyel
Matematika konzultáció az I.
évfolyamnak
15
Függvények I.
• Kapcsolat 2 halmaz elemei között
f : A B;
y f ( x ), ahol x A, y B
• Általában számhalmazok közötti művelet
– Alaphalmaz, képhalmaz
– Értelmezési tartomány
• Df A, azon A-beli pontok halmaza, ahol az f értelmezhető
– Értékkészlet
• Rf B, azon B-beli pontok halmaza, amelyeket az f az Rf-beli
pontokban felvesz értékként
• Függvény inverze (megfordítása)
f : A B f 1 : B A
Matematika konzultáció az I.
évfolyamnak
16
Függvények II.
• Függvények tulajdonságai
– Monotonitás
• Szigorúan monoton növő, monoton növő
x1 , x2 D f , x1 x2 f ( x1 ) f ( x2 ), illetve f ( x1 ) f ( x2 )
• Szigorúan monoton fogyó, monoton fogyó
x1 , x2 D f , x1 x2 f ( x1 ) f ( x2 ), illetve f ( x1 ) f ( x2 )
– Korlátosság
• Felülről korlátos
K1 , x D f f ( x ) K1
• Alulról korlátos
K2 , x D f f ( x ) K2
• Korlátos
K1, K2 , x D f K1 f ( x ) K2
Matematika konzultáció az I.
évfolyamnak
17
Függvények III.
• Függvények tulajdonságai
– Paritás
• Páros
f : , x D f f x f x
• Páratlan
f : , x D f f x f x
– Határérték
lim f ( x ) A A , 0 0, x D f , x x0 f ( x ) A
x x0
– Folytonosság
• Az f : függvény folytonos az x0 D f pontban, ha
,
lim f ( x ) f x0
x x0
– Periodikusság
Matematika konzultáció az I.
évfolyamnak
18
Függvények IV.
• Függvények megjelenítése, grafikonja
f : , x D f y f ( x ) P( x, f ( x ))
• Függvények megadása
–
–
–
–
táblázattal
kifejezéssel
egyenlettel
grafikonnal
Matematika konzultáció az I.
évfolyamnak
19
Függvények V.
• Függvények transzformációja
– f(λ·x)
– f(x+a)
– c·f(x)
– f(x) + t
- széthúzás λ-szorosra az X tengely
irányába
- eltolás balra a-val az X tengely irányába
- széthúzás c-szeresre az Y tengely
irányába
- eltolás t-vel az Y tengely irányába
Matematika konzultáció az I.
évfolyamnak
20
Elemi függvények
• Tulajdonságok ismerete: a korábbi fogalmak
értelmezése az adott függvényre
• Fontosabb függvények:
–
–
–
–
–
–
–
–
Konstans függvény;
Lineáris függvény;
Abszolutérték függvény;
Másodfokú (parabola) függvény;
Egészrész, törtrész függvény;
Lineáris törtfüggvény;
Logaritmikus, exponenciális függvények;
Trigonometrikus függvények.
Matematika konzultáció az I.
évfolyamnak
21
Elsőfokú (lineáris) egyenletek
• Olyan algebrai kifejezések, amelyeket = jel
kapcsol össze, és benne betűvel jelzett
mennyiségek is szerepelnek.
• Ezek lehetnek paraméterek és ismeretlenek is.
• Az egyenlet megoldása az ismeretlen(ek) azon
értékének meghatározása, amelyeket az
egyenletbe helyettesítve, az egyenlőség két
oldala azonosságot fejez ki.
• A megoldást a mérleg-elv segítségével kapjuk
meg (mi az?).
Matematika konzultáció az I.
évfolyamnak
22
Lineáris egyenlőtlenségek
• Megoldásuk: mint az egyenleteknél
• Eltérés: ha negatív számmal osztunk vagy
szorzunk, az egyenlőtlenség iránya megváltozik
• A megoldás általában egy halmaz (intervallum)
Matematika konzultáció az I.
évfolyamnak
23
Többismeretlenes egyenletek
• Megoldási módszerek:
– kiküszöböléssel
– helyettesítéssel
• Lehetnek ellentmondásosak (nincs megoldásuk)
vagy összefüggőek (végtelen sok megoldásuk
van).
Matematika konzultáció az I.
évfolyamnak
24
Másodfokú egyenletek
• Általános alakjuk:
a x2 b x c 0
• Megoldásukhoz a mérleg-elv nem elegendő
• Megoldóképlet:
x1, 2
b b2 4 a c
2a
• Összefüggések (Viéte-formulák, gyöktényező):
b
x1 x2
a
c
x1 x2
a
a x x1 x x 2 0
Matematika konzultáció az I.
évfolyamnak
25
Exponenciális egyenletek
• Az ismeretlen a kitevőben található
• Azonosságok használatával:
x
ax
– átalakítás a kifejezés1 a kifejezés2 alakra, amiből az a fv
szigorúan monoton tulajdonsága miatt
kifejezés1 kifejezés2 következik, ami megoldható;
– új ismeretlen bevezetésével visszavezetés
másodfokú egyenletre, aminek megoldása után
kapjuk meg az eredeti egyenlet gyökeit.
Matematika konzultáció az I.
évfolyamnak
26
Logaritmikus egyenletek
• Az ismeretlen a logaritmus alatt található
• Azonosságok használatával:
ax
– átalakítás loga kifejezés1 loga kifejezés2 alakra, amiből
a loga x fv szigorúan monoton tulajdonsága miatt
kifejezés1 kifejezés2 következik, ami megoldható;
– új ismeretlen bevezetésével visszavezetés első- vagy
másodfokú egyenletre, aminek megoldása után
kapjuk meg az eredeti egyenlet gyökeit.
Matematika konzultáció az I.
évfolyamnak
27
Szögfüggvények I.
• Derékszögű háromszögekben értelmezzük
a
sin
c
b
cos
c
a
tg
b
b
ctg
a
• Néhány elemi összefüggés:
sin cos
tg ctg
sin
tg
cos
sin 2 cos2 1
Matematika konzultáció az I.
évfolyamnak
28
Szögfüggvények II.
• Addíciós azonosságok:
sin sin cos cos sin
• Kétszeres szögek:
sin 2 2 sin cos
cos cos cos sin sin
tg tg
tg
1 tg tg
cos2 cos2 sin 2
2 tg
tg 2
1 tg 2
• Egyszerű átalakítások:
1 cos2
sin
2
1 cos2
cos
2
Matematika konzultáció az I.
évfolyamnak
29
Szögfüggvények III.
• További összefüggések:
sin sin 2 sin
cos
2
2
sin sin 2 sin
cos
2
2
cos cos 2 cos
cos
2
2
cos cos 2 sin
sin s
2
2
Matematika konzultáció az I.
évfolyamnak
30
Trigonometrikus egyenletek
• Megoldásukhoz használni kell a trigonometrikus
azonosságokat!
• Az egyenletet átalakítjuk, hogy csak egy
szögfüggvény szerepeljen benne.
• A kapott egyenletet megoldjuk vagy
visszavezetjük új ismeretlen bevezetésével
másodfokú egyenletre.
• A megoldás értelmezése:
– periódikusság miatti additív konstansok alkalmazása;
– a megoldás általában párban jelenik meg (két
szögnegyedben is azonos a szögfüggvény értéke).
Matematika konzultáció az I.
évfolyamnak
31
Sorozatok I.
• Számok rendezett (sorszámozott) halmaza, más
szóval egy leképezés a természetes számok
halmazáról a valós számok halmazára:
a : N , ai ,i 1,2,...,n
• Jellemző mennyiségei:
– a1 : a sorozat első tagja
– an : a sorozat n-dik tagja
– Sn : az első n tag összege
• Definiálása
– explicit képlettel
– implicit (rekurzióval)
Matematika konzultáció az I.
évfolyamnak
32
Sorozatok II.
• Fontosabb számsorozatok:
– Számtani
• a szomszédos tagok különbsége állandó
a an
2 a1 n 1 d
an a1 n 1 d ;
Sn 1
n
n
2
2
– Mértani
• a szomszédos tagok hányadosa állandó
qn 1
n 1
an a1 q ;
S n a1
q 1
– Fibonacci
• minden tag az előző kettő összege
a1 1; a2 1;
an an2 an1 ( n 3,4,...)
Matematika konzultáció az I.
évfolyamnak
33
Vektorok
• Irányított szakasz a síkban vagy a térben
• Jellemzői:
– állása (melyik egyenessel párhuzamos);
– iránya (merre mutat);
– hossza (távolság a kezdő- és a végpont között).
• Nem jellemző:
– kezdő- vagy támadási pontjának helye
• Műveletek vektorokkal
–
–
–
–
Számmal való szorzás
Összeadás, kivonás
Skaláris szorzás (két vektor szorzata egy szám)
Vektoriális szorzás (két vektor szorzata egy újabb vektor)
• Ábrázolása koordinátarendszerben
– helyvektor (kezdőpontja az origóI
Matematika konzultáció az I.
évfolyamnak
34
Geometria I.
• Fontosabb geometriai témák és fogalmak:
– Síkidomok osztályozása
• Szabályos és szabálytalan
• Konvex, konkáv
• Szimmetrikus (tengelyesen, középpontosan)
– Háromszögek tulajdonságai, fontosabb tételei:
• Szögei: hegyesszögű, derékszögű, tompaszögű
• Oldalai: általános, egyenlő szárú, szabályos
• Thalesz tétel, Pithagorasz tétel
c 2r
Matematika konzultáció az I.
évfolyamnak
a 2 b2 c2
35
Geometria II.
• Szögfelező tétel
p a
q b
• Derékszögű háromszögben befogó- és magasság tétel
Befogó t ét el:
a pc
b q c
Magasságt ét el:
m pq
Matematika konzultáció az I.
évfolyamnak
Geometria III.
• Súlypont, magasságpont, oldalfelező, szögfelező
tulajdonságai:
– Súlyvonalak egy pontban metszik egymást
– Magasságvonalak egy pontban metszik egymást
– Oldalfelező merőlegesek egy pontban metszik egymást (köré
írt kör középpontja)
– Szögfelelezők egy pontba metszik egymást (beleírt kör
középpontja)
• Számítási módszerek az általános háromszög megoldására:
– sinus- és cosinus tétel
sin us tétel :
a
b
c
2
sin sin sin
cosinus tétel : c 2 a 2 b 2 2 a b cos
Matematika konzultáció az I.
évfolyamnak
Geometria IV.
• A kör és fontosabb tulajdonságai:
– A kör részei: középpont, sugár, átmérő, körív,
körszelet, körcikk
– Középponti- és kerületi szögek tétele
– Külső pontból körhöz húzott érintőszakaszok tétele
– Húrnégyszög, érintőnégyszög tétele
– Háromszögbe, háromszög köré írt kör
Matematika konzultáció az I.
évfolyamnak
38
Geometria V.
• További fontosabb fogalmak és tételek:
– Párhuzamos szelők tételei és megfordításuk
– Síkidomok, háromszögek hasonlósága és
egybevágósága
– Síkidomok, háromszögek kerülete, területe
– Szabályos sokszögek tulajdonságai
– Síkbeli transzformációk
Matematika konzultáció az I.
évfolyamnak
39
Koordinátageometria I.
• A geometria számszerűsítése, geometriai
alakzatok egyenletekkel történő megadása
• Alkalmazásával a geometriai feladatok analitikus
megoldást nyernek (egyenletek használata,
megoldása)
• Egy geometriai objektum egyenlete egy olyan
azonosság, amelyet csak az objektum pontjai
elégítenek ki (a koordinátájukat az egyenletbe
helyettesítve azonosságot kapunk)
Matematika konzultáció az I.
évfolyamnak
40
Koordinátageometria II.
• Az egyenes egyenletei:
– Irány vektoros egyenlet
• Adott:
• Egyenlet:
vv1 ; v2 , P0 x0 ; y0
v2 x v1 y v2 x0 v1 y0
– Normál vektoros egyenlet
• Adott:
• Egyenlet:
n A; B , P0 x0 ; y0
A x B y A x0 B y0
– Két pontos átmenő egyenes egyenlete
• Adott:
• Egyenlet:
P1 x1 ; y1 , P2 x2 ; y2
y2 y1 x x1 x2 x1 y y1
– Meredekségével adott egyenes egyenlete
• Adott:
• Egyenlet:
m, P0 x0 ; y0
y y0 m x x0
Matematika konzultáció az I.
évfolyamnak
41
Koordinátageometria III.
• A kör egyenlete
• Adott:
• Egyenlete:
C u ; v , r
x u 2 y v 2 r 2
• A kör egyenletének általános alakja
A x2 A y 2 B x C y D 0
Matematika konzultáció az I.
évfolyamnak
42
Polinomok I.
• A polinom (vagy többtagú algebrai kifejezés)
egy olyan kifejezés, melyben csak számok és
változók egész kitevőjű hatványainak szorzatai
illetve ilyenek összegei szerepelnek.
• A polinomban a számokkal szorzott hatványszorzatokat monomoknak (vagy egytagoknak)
nevezzük.
• A monomokban lévő számszorzókat a polinom
együtthatóinak hívjuk.
• A polinomokkal műveletek végezhetők
– összeadás, kivonás, szorzás, osztás
Matematika konzultáció az I.
évfolyamnak
43
Polinomok II.
• Polinomok (maradékos) osztása:
– Az osztandó legmagasabb hatványkitevőjű tagjának
és az osztó legmagasabb hatványkitevőjű tagjának a
hányadosát képezzük
– Ezzel a hányadossal megszorozzuk az osztót és az
eredményt levonjuk az osztandóból
– A kapott új polinommal megismételjük az előbbi
eljárást
– A fenti lépéseket addig ismételjük, amíg az osztandó
alacsonyabb fokszámú lesz, mint az osztó
– Ha a megmaradó osztandó nem nulla, akkor
maradékos osztásról beszélünk
Matematika konzultáció az I.
évfolyamnak
44
Mintazárthelyi
• A feladatlapon csak egy helyes választ lehet
megadni
• A feladat szövegét figyelmesen olvassák el!
• Csak a biztos megoldásokat írják be, ne
tippeljenek!
• A részszámításokat minden esetben el kell
végezni, de külön lapon.
• A megoldás sorrendje nem feltétlenül a
számsorrend.
Matematika konzultáció az I.
évfolyamnak
45
Mintazárthelyi feladatlap
Matematika konzultáció az I.
évfolyamnak
46
1. feladat
Megoldás:
1 a
a 1 a
a a
1 a
1 a
1 a 1 a 1 a
a
a
Helyes válasz: B
Matematika konzultáció az I.
évfolyamnak
47
2. feladat
Megoldás:
4lg 25
10
104
10000
400 20
lg 25
25
10
Helyes válasz: D
Matematika konzultáció az I.
évfolyamnak
48
3. feladat
Megoldás:
Helyes válasz: C
Matematika konzultáció az I.
évfolyamnak
49
4. feladat
Megoldás:
1. a a a
b
c
b c
ab
c
a
2. a a a
b
b
bb
a
2b
a b
2
3. loga b c loga b loga c loga b c
Helyes válasz: D
Matematika konzultáció az I.
évfolyamnak
50
5. feladat
Megoldás:
lg x
értelm ezhető , ha x 0, ezért :
1
0
x
1
x
/ x , ha x 0 x 2 1 1 x
x
1
x
/ x , ha x 0 x 2 1 1 x 0
x
x
Helyes válasz: C
Matematika konzultáció az I.
évfolyamnak
51
6. feladat
Megoldás:
1
1
sin 75 cos75 2 sin 75 cos75 sin2 75
2
2
1
1
1 1 1
sin150 sin 30
2
2
2 2 4
Helyes válasz: C
Matematika konzultáció az I.
évfolyamnak
52
7. feladat
Megoldás:
f(x)
g(x)
h(x)
Helyes válasz: A
Matematika konzultáció az I.
évfolyamnak
53
8. feladat
Megoldás:
2
1
T1
1
1
1
2
T4 2 T1 T2
T1 T4 2 T1
4
T4 5
5
20
2
1
1
3
T2 T4 2 T1 2
4
20 20
3 1
1
T3 1 4 T1 4 T2 1 4 4
20 5
20
Helyes válasz: B
Matematika konzultáció az I.
évfolyamnak
54
9. feladat
Megoldás:
s1
s
46 km
46
46 km 46
h
t2 2
h
v1 100 km 100
v2 60 km 60
h
h
s
92 km
92
km 92 300 km
km
v
75
46
46
138 230 h
t
368 h
h
h
h
100
60
300
t1
Helyes válasz: A
Matematika konzultáció az I.
évfolyamnak
55
10. feladat
Megoldás:
2
1
1
x 14 x 142
x
x
1 1
x 2 2 x 2 196
x x
1
1
x 2 2 2 196 x 2 2 194
x
x
Helyes válasz: B
Matematika konzultáció az I.
évfolyamnak
56
11. feladat
Megoldás:
p c p
Vössz c
q
q
c p
c p n cn p
q
darabössz
m
q m
mq
n
Helyes válasz: D
Matematika konzultáció az I.
évfolyamnak
57
12. feladat
Megoldás:
sin( x )
Helyes válasz: A
x
sin
2
x
sin
2
Matematika konzultáció az I.
évfolyamnak
x
sin 1
2
58
13. feladat
Megoldás:
x2 8 x y 2 4 y 4 0
x 42 16 y 22 4 4 0
x 42 y 22 16
x 42 y 22 42
O( 4,2 ); r 4
Helyes válasz: E
Matematika konzultáció az I.
évfolyamnak
59
14. feladat
Megoldás:
7 5
B( 2;7 ) F ( ; )
2 2
7
5
e : 3 x 9 y 3 9
2
2
21 45
3 x 9 y
2
2
3 x 9 y 12 x 3 y 4
A( 5;2 )
n( 3;9 )
Helyes válasz: A
Matematika konzultáció az I.
évfolyamnak
60
15. feladat
Megoldás:
Eredetiérték: x
Évente20 % csökkenés 0,8 x
2 év után : 0,64 x
3
3
Ennek e : 0,64 x 0,48 x
4
4
Helyes válasz: B
Matematika konzultáció az I.
évfolyamnak
61
További mintapéldák
• Az alábbi feladatok megoldását külön oldalon
közöljük
• A példák önálló megoldását javasoljuk, a
kidolgozott megoldást ellenőrzésre használják
• További feladatok megoldása segít a
felkészülésben
• Ajánlott segédlet: Egységes érettségi
feladatgyűjtemény – Matematika (Konsept-H
Könyvkiadó, 2002)
Matematika konzultáció az I.
évfolyamnak
62
Példák I.
1) Egy matematika versenyen két feladatot tűztek
ki. Az elsőt az indulók 70 %-a, a másodikat
pedig az indulók 60 %-a oldotta meg. Minden
induló megoldott legalább egy feladatot, és
kilencen mindkét feladatot megoldották.
Hányan indultak a versenyen?
2) Számológép használata nélkül állapítsa meg,
melyik nagyobb a következő számok közül:
9 4 2 vagy 1 2 2
Matematika konzultáció az I.
évfolyamnak
63
Példák II.
3) Fejezze ki c-vel az alábbi kifejezéseket, ha
c loga b . Tegye meg a szükséges kikötéseket
is!
a
3
log
b
c loga ( a b )
log a
a
b
4) Hozza egyszerűbb alakra a következő
kifejezéseket:
3
a
1
1 a a2
( a 1 )
1
1
1 a
1
3 5 s 2 s
1 s 2 s2
1
2
Matematika konzultáció az I.
évfolyamnak
1
a
64
Példák III.
5) Végezze el az alábbi polinomos osztást.
Mennyi lesz a művelet maradéka?
4 x 6 7 x 4 5 x3 5 x 2 4 x 1 : 2 x 2 3 x 1
6) Egy háromszög egyik szöge a másik két szög
számtani közepe. A két nagyobbik szög
együttvéve akkora, mint a legkisebb szög
háromszorosa. Mekkorák a háromszög
szögei?
7) Melyik az az ötjegyű szám, amely után egy 1est írva, háromszor akkora számot kapunk,
mintha az elejére írnánk egy 1-est?
Matematika konzultáció az I.
évfolyamnak
65
Példák IV.
8) Oldja meg az alábbi egyenlőtlenséget:
2 x 4
2
3 x
9) Melyik az a legbővebb halmaz, amelyen az
alábbi f(x) függvény értelmezhető?
tg( x )
f(x)
1 2 sin( x )
10) Három szám összege 114. Lehetnek egy
mértani sorozat első három tagja, vagy egy
számtani sorozat 1., 4. és 25. tagja is. Mely
számokról van szó?
Matematika konzultáció az I.
évfolyamnak
66
Példák V.
11) Vízszintes sík talajon álló 100 m magas
felhőkarcolóból megmérjük egy egyenes
útszakasz két végpontjának depressziószögét
és az útszakasz látószögét. A mért értékek
rendre 4,5º; 5,5 º és 75 º. Mekkora az
útszakasz hossza?
12) Adja meg annak a körnek az egyenletét,
amelynek középpontja a C(0;5) pont és érinti a
g : 5 x 3 y 19 egyenest.
Matematika konzultáció az I.
évfolyamnak
67
Megoldások
1) Az egyik feladatot 60%, a
másodikat 70% oldotta meg,
ezért mindkét feladattal 30%
foglalkozott. Tudjuk, hogy ez 9
főt jelent, így a teljes létszám
30 tanuló. Ennyien indultak a versenyen.
2) Azonos átalakításokkal kapjuk:
9 4 2
?? 1 2 2
/ " 2"
9 4 2
?? 1 4 2 4 2
9 ?? 9
Vagyis a ?? helyére = írható!
Matematika konzultáció az I.
évfolyamnak
68
Megoldások
3)
loga ( a b ) loga a loga b 1 c
a
log a a log a b 1 c
b
loga b3 3 loga b 3 c
log a
4)
a3
1 a 1 a a 2 1 a a 3
1 a a
1 a
1 a
1 a 2 a 2 a3 a3
1
1 a
1 a
2
1
1
1
1
a 1 a
a 1
1
1
a 1
1
a
a
a 1
2 a 1 a 1
a
1
2 a 1
2 a 1
2 a 1
1
1
1
1
1
Matematika konzultáció az I.
évfolyamnak
69
Megoldások
4) (folytatás) 3 5 s 2 s 2
1 s 2 s2
m ert : x1,2
x1,2
x 1 x 3 x 3
2
x 12 x 1 x 1
5 25 4 ( 2 ) 3
2 ( 2 )
1 1 4 ( 2 ) 1
2 ( 2 )
Matematika konzultáció az I.
évfolyamnak
1
2
3
1
2
1
70
Megoldások
5)
4 x 6 7 x 4 5 x 3 5 x 2 4 x 1 : 2 x 2 3x 1 2 x 4 3x 3 x 1
4 x6 6x5 2 x 4
6 x5 9 x 4 5x3 5x 2 4 x 1
6 x 9 x 3x
5
4
3
2 x3 5x 2 4 x 1
2 x 3 3x 2 x
2 x 2 3x 1
2 x 2 3x 1
0
Matematika konzultáció az I.
évfolyamnak
71
Megoldások
; 3 ; 180
2
5
4
;
3
3
4 5
12
180
180
3
3
3
45; 60; 75
6)
7)
10 x 1 3 100000 x
10 x 1 300000 3 x
7 x 299999
x 42857
Matematika konzultáció az I.
évfolyamnak
72
Megoldások
8)
2 x 4
2 x 4 2 3 x
2
3 x
3 x
4 x 10
0 4 x 10 0 3 x 0
3 x
4 x 10 3 x
x 2,5
3 x 2,5 x 3
4 x 10
0 4 x 10 0 3 x 0
3 x
4 x 10 3 x
x 2,5
3 x nincs megoldás!
Matematika konzultáció az I.
évfolyamnak
73
Megoldások
9)
f(x)
tg( x )
1 2 sin( x )
tg( x ) értelm ezett 1 2 sin( x ) 0
x k
1 2 sin( x )
2
1
sin( x )
2
5
2 k x 2 2 k x k
2k x 2k
6
6
2
Matematika konzultáció az I.
évfolyamnak
74
Megoldások
10)
I.
a a q a q 2 114
a 1 q q 2 114
a q a a q2 a q
II.
3
21
q 1
q 1
a
aq
3
21
21
qq7
3
I. a 1 7 49 114 a 2
d a
q 1 2 6
d 4
3
3
a1 2
a2 2 7 14
a3 2 7 2 98
Matematika konzultáció az I.
évfolyamnak
75
Megoldások
11)
sin 4,5
100
100
t1
1274,55
t1
sin 4,5
sin 5,5
100
100
t2
1043,34
t2
sin 5,5
t 2 t12 t22 2 t1 t 2 cos 75
t 2 1274,552 1043,342 2 1274,551043,34 cos 75
t 1422,91
Matematika konzultáció az I.
évfolyamnak
76
Megoldások
12)
k : x 2 y 5 r 2
g : 5 x 3 y 19
2
x 2 y 2 10 y 25 r 2
x
19 3 y
5
361 114 y 9 y 2
y 2 10 y 25 r 2
25
361 114 y 9 y 2 25 y 2 250 y 625 25 r 2
34 y 2 136 y 986 25 r 2 0
D 1362 4 34 986 25 r 2 0
18496 134096 3400 r 2 0
3400 r 2 115600
r 2 34
k : x 2 y 2 10 y 25 34
k : x 2 y 2 10 y 9 0
Matematika konzultáció az I.
évfolyamnak
77
Tanácsok a matematika tanulásához
•
•
•
•
•
•
•
•
Részvétel az előadásokon
Jegyzet készítése – ha nem ért valamit, akkor is!
Óra után az anyag átnézése és megértése
Problémás részekről konzultálás évfolyamtárssal, felsőbb évessel
A gyakorlaton aktív részvétel (kérdezés!)
A feladatok önálló megoldása az óra után
Mintapéldák megoldása (begyakorlás)
Zárthelyire készülés (csoportos feladatmegoldás)
Matematika konzultáció az I.
évfolyamnak
78