Transcript HCO 3

ACID-BASE BALANCE
By:
Husnil Kadri
Biochemistry Departement
Medical Faculty Of Andalas University
Padang
CARA TRADISIONAL :
Hendersen-Hasselbalch
(1909)
2
Normal
[HCO
GINJAL
BASA3-]
HCO
HCO 3
3
pH = 6.1 + log
Normal
Kompensasi
PARU
pCO2
ASAM
CO
CO22
3
Carbonic acid/bicarbonate buffer system
pKa = 6.1
ECF:
H2CO3  H+
Carbonic acid
+
HCO3Bicarbonate ion
• The pKa of carbonic acid is 6.1
• Carbonic acid is the major buffer in ECF
• The pH of blood can be determined using
the Henderson-Hasselbalch equation
4
Henderson-Hasselbalch equation
• pH = pKa + log [HCO3-]/[H2CO3]
• pH = pKa + log [HCO3-]/0.03 x PCO2
• 7.4 = 6.1 + log
20 / 1
• 7.4 = 6.1 + 1.3
• Plasma pH equals 7.4 when buffer ratio is 20/1
• The solubility constant of CO2 is 0.03
5
GANGGUAN KESEIMBANGAN ASAM-BASA
TRADISIONAL
DISORDER
pH
PRIMER
RESPON
KOMPENSASI
ASIDOSIS
METABOLIK

HCO3- 
pCO2 
ALKALOSIS
METABOLIK

HCO3- 
pCO2 
ASIDOSIS
RESPIRATORI

pCO2 
HCO3- 
ALKALOSIS
RESPIRATORI

pCO2 
HCO3- 
Normal Compensatory Response
• Any primary disturbance in acid-base
homeostasis invokes a normal
compensatory response.
• A primary metabolic disorder leads to
respiratory compensation, and a primary
respiratory disorder leads to an acute
metabolic response due to the buffering
capacity of body fluids.
• A more chronic compensation (1-2 days) due
to alterations in renal function.
Mixed Acid - Base Disorder
• Most acid-base disorders result from a single primary
disturbance with the normal physiologic compensatory
response and are called simple acid-base disorders.
• In certain cases, however, particularly in seriously ill
patients, two or more different primary disorders may
occur simultaneously, resulting in a mixed acid-base
disorder.
• The net effect of mixed disorders may be additive (eg,
metabolic acidosis and respiratory acidosis) and result
in extreme alteration of pH;
• or they may be opposite (eg, metabolic acidosis and
respiratory alkalosis) and nullify each other’s effects on
the pH.
Cara Stewart ;
pH atau [H+] DALAM PLASMA
DITENTUKAN OLEH
DUA VARIABEL
VARIABEL
INDEPENDEN
VARIABEL
DEPENDEN
Stewart PA. Can J Physiol Pharmacol 61:1444-1461, 1983.
INDEPENDENT VARIABLES
DEPENDENT VARIABLES
Strong Ions
Difference
pCO2
Protein
Concentration
pH
VARIABEL INDEPENDEN
CO2
STRONG ION DIFFERENCE
pCO2
SID
WEAK ACID
Atot
DEPENDENT VARIABLES
H+
HCO3OH-
AH
CO3-
A-
CO2
CO2 Didalam plasma berada
dalam 4 bentuk
 sCO2 (terlarut)
 H2CO3 asam karbonat
-
 HCO3 ion bikarbonat
 CO32- ion karbonat
 Rx dominan dari CO2 adalah rx
absorpsi OH- hasil disosiasi air
dengan melepas H+.
 Semakin tinggi pCO2 semakin
banyak H+ yang terbentuk.
 Ini yg menjadi dasar dari
terminologi “respiratory acidosis,”
yaitu pelepasan ion hidrogen akibat
 pCO2
STRONG ION DIFFERENCE
Definisi:
Strong ion difference adalah ketidakseimbangan muatan
dari ion-ion kuat. Lebih rinci lagi, SID adalah jumlah
konsentrasi basa kation kuat dikurangi jumlah dari
konsentrasi asam anion kuat. Untuk definisi ini semua
konsentrasi ion-ion diekspresikan dalam ekuivalensi
(mEq/L).
Semua ion kuat akan terdisosiasi sempurna jika berada didalam
larutan, misalnya ion natrium (Na+), atau klorida (Cl-). Karena
selalu berdisosiasi ini maka ion-ion kuat tersebut tidak
berpartisipasi dalam reaksi-reaksi kimia. Perannya dalam kimia
asam basa hanya pada hubungan elektronetraliti.
STRONG ION DIFFERENCE
Gamblegram
Mg++
Ca++
K+ 4
SID
[Na+] + [K+] + [kation divalen] - [Cl-] - [asam organik kuat-]
Na+
140
Cl102
[Na+]
140 mEq/L
+
[K+]
+
-
4 mEq/L -
KATION
[Cl-]
102 mEq/L
ANION
=
[SID]
=
34 mEq/L
SKETSA HUBUNGAN ANTARA SID,H+ DAN OH-
[H+]
[OH-]
Konsentrasi [H+]
Asidosis
(–)
Alkalosis
SID
(+)
Dalam cairan biologis (plasma) dgn suhu 370C, SID hampir
selalu positif, biasanya berkisar 30-40 mEq/Liter
WEAK ACID
[Protein-] + [H+]
[Protein H]
disosiasi
Kombinasi protein dan posfat disebut asam
lemah total (total weak acid)  [Atot].
Reaksi disosiasinya adalah:
[Atot] (KA) = [A-].[H+]
Gamblegram
Mg++
Ca++
K+ 4
HCO324
Weak acid
(Alb-,P-)
Na+
140
Cl102
KATION
ANION
SID
APLIKASI
H3O+ = H+ = 40 mEq/L
K
Mg
Ca
HCO3- 
HCO3 = 24
HCO
Alb
3 
P
Alb
Laktat/keto=UA
P
Na
140
Alb
P
Keto/laktat
Asidosis
hiperkloremi
asidosis
Cl
CL
Cl
115
95
102
Alkalosis
hipokloremi
KATION
ANION
SID
SID n
SID 
KLASIFIKASI GANGGUAN
KESEIMBANGAN ASAM BASA
BERDASARKAN PRINSIP STEWART
Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in
critically ill patients. Am J Respir Crit Care Med 2000 Dec;162(6):2246-51
KLASIFIKASI
ASIDOSIS
ALKALOSIS
 PCO2
 PCO2
 [Na+],  SID
 [Na+],  SID
i. Kelebihan / kekurangan Cl-
 [Cl-],  SID
 [Cl-],  SID
ii. Ada anion tak terukur
 [UA-],  SID
I. Respiratori
II. Nonrespiratori (metabolik)
1. Gangguan pd SID
a. Kelebihan / kekurangan air
b. Ketidakseimbangan anion
kuat:
2. Gangguan pd asam lemah
i. Kadar albumin
 [Alb]
 [Alb]
ii. Kadar posphate
 [Pi]
 [Pi]
Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in
critically ill patients. Am J Respir Crit Care Med 2000 Dec;162(6):2246-51
RESPIRASI
METABOLIK
Abnormal
pCO2
Abnormal
SID
AIR
 Anion kuat
Cl-
Alkalosis
Turun
kekurangan
Hipo
Asidosis
Meningkat
kelebihan
Hiper
Fencl V, Am J Respir Crit Care Med 2000 Dec;162(6):2246-51
Abnormal
Weak acid
Alb
PO4-
UA-
Turun
Positif
meningkat
KEKURANGAN AIR - WATER DEFICIT
Diuretic
Diabetes Insipidus
Evaporasi
Plasma
Plasma
Na+ = 140 mEq/L
Cl- = 102 mEq/L
SID = 38 mEq/L
1 liter
140/1/2 = 280 mEq/L
102/1/2 = 204 mEq/L
SID = 76 mEq/L
SID : 38  76 = alkalosis
ALKALOSIS KONTRAKSI
½ liter
KELEBIHAN AIR - WATER EXCESS
Plasma
Na+ = 140 mEq/L
Cl- = 102 mEq/L
SID = 38 mEq/L
1 Liter
H2O
1 liter
2 liter
SID : 38  19 = Acidosis
ASIDOSIS DILUSI
140/2 = 70 mEq/L
102/2 = 51 mEq/L
SID = 19 mEq/L
GANGGUAN PD SID:
Pengurangan ClPlasma
Na+ = 140 mEq/L
Cl- = 95 mEq/L
SID = 45 mEq/L
SID
 ALKALOSIS
ALKALOSIS HIPOKLOREMIK
2 liter
GANGGUAN PD SID:
Penambahan/akumulasi ClPlasma
Na+ = 140 mEq/L
Cl- = 120 mEq/L
SID = 20 mEq/L
SID
 ASIDOSIS
ASIDOSIS HIPERKLOREMIK
2 liter
PLASMA + NaCl 0.9%
Plasma
NaCl 0.9%
Na+ = 140 mEq/L
Cl- = 102 mEq/L
SID = 38 mEq/L
Na+ = 154 mEq/L
Cl- = 154 mEq/L
SID = 0 mEq/L
1 liter
SID : 38 
1 liter
ASIDOSIS HIPERKLOREMIK AKIBAT
PEMBERIAN LARUTAN Na Cl 0.9%
Plasma
=
Na+ = (140+154)/2 mEq/L= 147 mEq/L
Cl- = (102+ 154)/2 mEq/L= 128 mEq/L
SID = 19 mEq/L
SID : 19  Asidosis
2 liter
PLASMA + Larutan RINGER LACTATE
Plasma
Ringer laktat
Laktat cepat
dimetabolisme
Na+
= 140 mEq/L
Cl- = 102 mEq/L
SID= 38 mEq/L
1 liter
SID : 38
Cation+ = 137 mEq/L
Cl- = 109 mEq/L
Laktat- = 28 mEq/L
SID = 0 mEq/L
1 liter
Normal pH setelah pemberian
RINGER LACTATE
Plasma
=
Na+ = (140+137)/2 mEq/L= 139 mEq/L
Cl- = (102+ 109)/2 mEq/L = 105 mEq/L
Laktat- (termetabolisme) = 0 mEq/L
2 liter
SID = 34 mEq/L
SID : 34  lebih alkalosis dibanding jika
NaCl 0.9%
diberikan
MEKANISME PEMBERIAN NABIKARBONAT PADA ASIDOSIS
Plasma;
Plasma + NaHCO3
asidosis
hiperkloremik
Na+ = 140 mEq/L
Cl- = 130 mEq/L
SID =10 mEq/L
25 mEq
NaHCO3
1 liter
1.025
liter
Na+
HCO3 cepat
= 165 mEq/L dimetabolisme
Cl- = 130 mEq/L
SID = 35 mEq/L
SID  : 10  35 :  Alkalosis, pH kembali normal  namun mekanismenya bukan
karena pemberian HCO3- melainkan karena pemberian Na+ tanpa anion kuat yg
tidak dimetabolisme seperti Cl- sehingga SID   alkalosis
UA = Unmeasured Anion:
Laktat, acetoacetate, salisilat, metanol dll.
K
K
HCO3-
HCO3-
SID
Keto-
ANa+
SID 
ANa+
Cl-
ClLactic/Keto asidosis
Normal
Ketosis
GANGGUAN PD ASAM LEMAH:
Hipo/Hiperalbumin- atau PK
K
HCO3
SID
Na
Cl
Normal
SID
K
HCO3
Alb-/P
Alb-/P-
Na
HCO3
Alb/P 
Na
Asidosis
hiperprotein/
hiperposfatemi
Cl
Acidosis
SID
Alkalosis
hipoalbumin
Cl /hipoposfate
mi
Alkalosis
Anion Gap
• Described by Gamble in 1939
• Electroneutrality
• Na+, Cl-, and HCO3 are measured ions
Na + UC = Cl + HCO3 + UA
UC = Sum of unmeasured cations
UA = Sum of unmeasured anions
Anion Gap
Unmeasured Cations:
• total 11 mEq/L
– Potassium 4
– Calcium
5
– Magnesium 2
Unmeasured Anions:
• total 23 mEq/L
– Sulfates
1
– Phosphates 2
– Albumin
16
– Lactic acid 1
– Org. acids 3
Anion Gap
Na + UC = Cl + HCO3 + UA
140 + 11 = 104 + 24 + 23
151 = 151
UA – UC = Na - (Cl + HCO3);
Anion Gap = Na - (Cl + HCO3)
If the anion gap is elevated
• Then compare the changes from normal between
the anion gap and [HCO3 -].
• If the change in the anion gap is greater than the
change in the [HCO3 -] from normal, then a
metabolic alkalosis is present in addition to a gap
metabolic acidosis.
• If the change in the anion gap is less than the
change in the [HCO3 -] from normal, then a non
gap metabolic acidosis is present in addition to a
gap metabolic acidosis.
Anion Gap Acidosis:
• Anion gap >12 mEq/L; caused by a
decrease in [HCO3 -]
• balanced by an increase in an
unmeasured acid ion from either
endogenous production or exogenous
ingestion (normochloremic acidosis).
Non anion Gap Acidosis:
• Anion gap = 8-12 mmol/L; caused by a
decrease in [HCO3 -] balanced by an
increase in chloride (hyperchloremic
acidosis). Renal tubular acidosis is a type
of non gap acidosis
Increased Anion Gap
Normal = 8-15
May differ institutionally
• Accumulation of organic acids (ketones,
lactate)
• Toxic Ingestions
– methanol, ethylene glycol, salicylates
• Reduced inorganic acid excretion
– phosphates, sulfates
• Decrease in unmeasured cations
(unusual)
Increased AG Metabolic Acidosis:
• Methanol
• Uremia/Renal
Failure
• INH, Iron--lactate
• Paraldehyde
• Lactic Acidosis
– Has many etiologies
– Cyanide, CO, Toluene,
HS
– Poor perfusion
• Ethylene glycol
• Salicylates
– Methyl salicylate
• (Oil of wintergreen)
– Mg salicylate
Levraut J et al. Int Care
Med 23:417, 1997
Increased Anion Gap
Normal = 8-15
May differ institutionally
“ion specific electrodes”
• Accumulation of organic acids (ketones, lactate)
• Toxic Ingestions
– methanol, ethylene glycol, salicylates
• Reduced inorganic acid excretion
– phosphates, sulfates
• Decrease in unmeasured cations (unusual)
Decreased or Negative Anion Gap
Clin J Am Soc Nephrol 2: 162-174, 2007
• Low protein most important
• Albumin has many unmeasured negative
charges
• “Normal” anion gap (12) in cachectic person
– Indicates anion gap metabolic acidosis
• Other etiologies of low AG:
– Low K, Mg, Ca, increased globulins (Mult.
Myeloma), I intoxication
• Negative AG
– more unmeasured cations than unmeasured
anions
– Bromide, Iodide, Multiple Myeloma
44
Change in Anion Gap vs HCO3
• In simple AG Metabolic Acidosis
– decrease in plasma bicarbonate = increase in
AG
Anion Gap = 1
HCO3
• Helpful in identifying mixed disorders
Respiratory Compensation
for
Metabolic Acidosis:
• Occurs rapidly
• Hyperventilation
– “Kussmaul Respirations”
– Deep > rapid (high tidal
volume)
• Is not Respiratory Alkalosis
Metabolic Alkalosis:
• Calculation not as
accurate
• Hypoventilation
• Not Respiratory
Acidosis
• Restricted by
hypoxemia
• PCO2 seldom > 50-55
Reference
1.
2.
3.
4.
5.
6.
7.
8.
Achmadi, A., George, YWH., Mustafa, I. Pendekatan “Stewart”
Dalam Fisiologi Keseimbangan Asam Basa. 2007
Beaudoin, D. Electrolytes and ion sensitive electrodes. PPT.
2003.
Ivkovic, A ., Dave, R. Renal review. PPT
Kersten. Fluid and electrolytes. PPT.
Marieb, EN. Fluid, electrolyte, and acid-base balance. PPT.
Pearson Education, Inc. 2004
Rashid, FA. Respiratory mechanism in acid-base homeostasis.
PPT. 2005.
Silverthorn, DU. Integrative Physiology II: Fluid and Electrolyte
Balance. Chapter 20, part B. Pearson Education, Inc. 2004
Smith, SW. Acid-Base Disorders. www.acid-base.com
47