Transcript 可积系统的离散化
上 海大学 张大军
(静宜大学 2013年11月)
孤立波的特征:波+粒子
Unlike normal waves they will never merge—so a
small wave is overtaken by a large one, rather than
the two combining.
KdV 2-soliton
伟大的水波
• The Scott Russell Aqueduct on the Union Canal near Heriot-Watt University,
12 July 1995. For the technically minded, the aqueduct is 89.3 m long,
4.13m wide, and 1.52m deep.
自然界中的孤立波
实验室中的孤立波
伟大的水波
• The Scott Russell Aqueduct on the Union Canal near Heriot-Watt University,
12 July 1995. For the technically minded, the aqueduct is 89.3 m long,
4.13m wide, and 1.52m deep.
John Scott Russell
(9 May 1808-8 June 1882)
Education: Edinburgh, St. Andrews, Glasgow
• August, 1834
• z
Russell’s observation
• A large solitary elevation, a rounded, smooth
and well defined heap of water, which
continued its course along the channel
apparently without change of form or
diminution of speed … Its height gradually
diminished, and after a chase of one or two
miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my
first chance interview with that singular and
beautiful phenomenon.
(Russell, 1838)
Russell的实验
Russell的实验
研究结论
• The waves are stable, and can travel over very
large distances (normal waves would tend to
either flatten out, or steepen and topple over)
• The speed depends on the size of the wave, and
its width on the depth of water.
• Unlike normal waves they will never merge—so a
small wave is overtaken by a large one, rather
than the two combining.
• If a wave is too big for the depth of water, it splits
into two, one big and one small.
The Great Wave Translation
• Solitary waves --- J.S. Russell
• Airy: “even in an uniform-canal of rectangular section, are no
longer propagated without change of type.” Solitary waves of
permanent form do not exist!
• Russell: “completely the opposite of that to which we
should be led on the same grounds.”
非线性模型:波的坍塌
• 非线性方程:
• 行波解:
• 速度:
速度快
速度慢
非线性模型:波的坍塌
t=0
t>0
Scott Russell 的其他
• 组建 the Royal Commission for the Exhibition
of 1851
• 成立J Scott Russell & Co. shipbuilding
company
The Great Eastern
Scott Russell 的其他
• 组建 the Royal Commission for the Exhibition
of 1851
• 成立J Scott Russell & Co. shipbuilding
company
• 评价:未提Solitary waves
• a better scientist than a businessman
1834 ~ 1895
J Scott Russell
(1808-1882)
Diederik Korteweg
(1848-1941)
Korteweg-de Vries(KdV)方程
• Korteweg(1848-1941) Amsterdam大学教授
• Gustav de Vries : K的学生
流体力学
基本模型
KdV方程:
行波解:
Russell’s Grate Wave---Solitary Wave
Travelling wave
animation
1895 ~ 1960s
Diederik Korteweg
(1848-1941)
Martin D. Kruskal
(1925-2006)
FPU问题
• Fermi-Pasta-Ulam problem
(Los Alamos, 1950’s)
• Study the thermalization
process of a solid
• Computer use (Maniac)
Birth of Solitons (孤立子)
•
•
•
•
•
Martin David Kruskal
1925-2006
导师:Courant
院士
Father of “Soliton”
Solitons(partical property, 1965)
• FPU问题
• Toda Lattice
• KdV方程的数值解
粒子特征( Soliton)
Inverse Scattering Transform
(反散射变换)
Exact solutions to the KdV
1-soliton solution
Exact solutions to the KdV
2-soliton solution
sine-Gordon方程
sine-Gordon方程
• 机械孤子:
Kink
Anti-Kink
animation
animation
animation
Breather
http://www.math.h.kyoto-u.ac.jp/~takasaki/soliton-lab/gallery/solitons/sg-e.html
方法举例
• 反散射变换/Riemann-Hilbert方法,
基于Lax对
• Hirota方法 /双线性方法
• Royal Hirota 日本学者
Hirota双线性方法
KdV方程:
变换:
双线性方程:
级数解:
1孤子解:
Hirota双线性方法
• 2孤子解:
Hirota双线性方法
• n孤子解:
Hirota双线性方法
• 反散射变换
• Hirota方法
• Sato理论
• 2小时/天 X 2周
• 2小时/天 X 1天
• 2小时/天 X 2月
离 散
•
•
•
•
如何看待离散,为什么要离散?
可积离散
多维相容性
从离散到连续:连续极限
如何看待离散?
实数x
整数n: f(x)
t = t0 + m q
u (x, t)
f(n)
(×)
u (n, m)
映射
(x0, t0)
x = x0 + n p
非局部特征
例:非线性叠加公式与离散方程
递推关系=离散系统
例:特殊函数与离散方程
递推关系=离散系统
例:凸五边形映射
超离散系统
超离散系统
• 元胞自动机(Wolfram)
• 黑白格子
超离散可积系统
t=0
每次移动1球,
2. 将最左边的球移到右边最近的空盒子,
3. 重复此步骤直至所有的球都被移动一次。
1.
t=1
2020/4/30
元胞自动机与孤子系统的离散化
55
[Tokihiro, Tokyo]
t=0
t=1
t=2
t=3
t=4
2020/4/30
元胞自动机与孤子系统的离散化
56
基本运算
• 平移
• 差分
导数
• Leibniz 公式
符号
为什么要离散?
•
To be sure, it has been pointed out that the introduction of
a space-time continuum may be considered as contrary to
nature in view of the molecular structure of everything
which happens on a small scale. It is manitained that
perhaps the success of the Heisenberg method points to a
purely algebraic description of nature, that is the elimination
of continuum functions from physics. Then, however, we
must also give up, by principle, the space-time continuum. It
is not unimaginable that human ingenuity will some day find
methods which will make possible to proceed along such a
path. … …
• [A. Einstein, 1936]
为什么要离散?
• Stanislav Smirnov
2010 ICM Fields Medal
• Nijhoff: The study of integrability of discrete
systems forms at the present time the most
promising route towards a general theory of
difference equations and discrete systems.
• Hietarinta: Continuum integrability is well
established and all easy things have already
been done; discrete integrability, on the other
hand, is relatively new and in that domain
there are still new things to be discovered.
• Bobenko: The aim of discrete differential
geometry is the discretization of classical
differential geometry, that is, to find proper
discrete analogs of differential geometric
notions and to develop at the discrete level a
corresponding theory.
离 散
•
•
•
•
如何看待离散,为什么要离散?
可积离散
多维相容性
从离散到连续:连续极限
Sato理论的离散化
•
•
•
•
反散射变换:Kruskal, 1967
双线性方法:Hirota, 1971
Sato’s Theory:Sato, 1980 (2003 Wolf)
Kyoto Group: Data, Jimbo, Miwa, 1980’s
Sato理论ABC
Web: http://www.science.shu.edu.cn/siziduiwu/zdj/index.htm
指数函数
• 指数函数
• 离散指数
• 平面波因子
N次代数多项式的根
双线性等式
Miwa变换/映射
文献:Data, Jimbo, Miwa, JPSJ, 1981, 1982
离 散
•
•
•
•
如何看待离散,为什么要离散?
可积离散
多维相容性
从离散到连续:连续极限
多维相容性
• KdV非线性叠加公式
多维相容性
• KdV非线性叠加公式
相容性?
相同的
Searching 多维相容系统
• 多维相容性 Frank Nijhoff(2011), Nijhoff(2012),
Bobenko-Suris (2012)
• Adler-Bobenko-Suris (ABS) Classification (2003, 09)
• Hietarinta’s search
• 4D-相容:ABS(IMRN 2011)
Consistency Around the Cube
ABS链方程(ABS, 2003, CMP)
……
多维相容性应用1:Bäcklund变换
• Consistent Cube
Bäcklund变换
多维相容性应用1:Lax Pair
• Bäcklund变换
• Lax Pair
其他方法
•
•
•
•
双线性(理解离散的双线性)
Cauchy矩阵(矩阵方程与离散系统)
直接线性化方法(特征曲线与离散系统)
。。。
离 散
•
•
•
•
如何看待离散,为什么要离散?
可积离散
多维相容性
从离散到连续:连续极限
连续极限
• KdV的非线性叠加公式
• 链势KdV (lpKdV):
连续极限(I)
• lpKdV
• 半离散pKdV
• 变量关系
连续极限(II)
• 半离散pKdV
• pKdV
• 变量关系
问 题
•
•
•
•
离散的数学工具
量子几何
应用
离散化与数值计算
谢 谢
• Web:
www.science.shu.edu.cn/siziduiwu/zdj/index.htm
• Email: [email protected]
• 主要合作者
曹策问老师
Jarmo Hietarinta (Turku, Finland)
Frank W Nijhoff (Leeds, UK)
KM Tamizhmani (Pondicherry, India)