Quantum transport simulation tool, supplied with GUI

Download Report

Transcript Quantum transport simulation tool, supplied with GUI

Department of physical and biomedical electronics
National Technical University of Ukraine
“Kyiv Polytechnic Institute”
Quantum transport simulation tool,
supplied with GUI
Authors: Fedyay Artem, Volodymyr Moskaliuk, Olga Yaroshenko
Presented by: Fedyay Artem
13, April 2011
ElNano XXXI
Kyiv, Ukraine
Overview





Objects of simulation
Physical model
Computational methods
Simulation tool
Examples of simulation
[email protected]
2
Objects to be simulated
Layered structures with transverse electron transport:
resonant-tunneling diodes (RTD) with 1, 2, 3, … barriers;
Supperlattices
Reference
topology
(example):

[email protected]
3
Physical model. Intro
ENVELOPE FUNCTION (EFFECTIVE MASS) METHOD

Envelope of what?
of the electron wave function:
ψ(r )  u (r )χ(r )
nk
χ(r )=e
ikr
in case of homogeneous s/c
and flat bands (Bloch waves)

What if not flat-band?
[email protected]
4
Physical model. Type
ENVELOPE FUNCTION (EFFECTIVE MASS) METHOD
m1*
ψ(r)

χ(r)
U (r)

U (r)
m

m*
0
actual potential
its approximation
within the method
m2*
hereafter  will denote envelope of
the wave function of electron in a crystal
[email protected]
5
Model’s restriction
h/s with band wraps of type I (II)
DEv
Б
Ev
a
A
Ev
a
z
Б
DEv
Б
A
Ec
Ec
DEc
DEc

Ez
Ec
DEv
Band
structures
sketches
Ez
z
Ev
A
a
TYPE I
TYPE II
TYPE III
GaAs – AlGaAs
GaSb – AlSb
GaAs – GaP
InGaAs – InAlAs
InGaAs – InP
InP-Al0.48In0.52As
InP-InSb
BeTe–ZnSe
GaInP-GaAsP
Si-SiGe
InAs-GaSb
[email protected]
DEc
Ez
6
z
Physical model.
Type
Sometimes referred to as
“COMBINED”
 What do we combine?
“
we combine semiclassical and quantum-mechanical
”
approaches for different regions
device
(active region)
left
reservoir
right
reservoir
ND
ND
b
a
с
с
i-AlxGa1-xAs
b
i-GaAs
semiclassical
(*) homogeneous ,
(**) almost equilibrium high-doped
envelopefucntion
n+-GaAs
[email protected]
(*) nanoscaled heterolayers ,
(**) non-equilibrium intrinsic
7
Physical model.
Electron gas
Parameter
Value in l.r.
Value in a.r.
Value in r.r.
Donor’s
concentration
ND=1022...1024 m-3
ND=0
ND=1022...1024 m-3
Material base
n+ GaAs
i-GaAs, i-AlAs
n+ GaAs
Electron gas
(e.g.)
3D
quazi-2D
3D
State
Dispersion low
Local equilibrium
E  U (z) 
k   k y2  k z2
Wave nature of
electron is
taking into
account by
means of
Mean free path
Motion
mechanism
Electron
concentraion
2
2 2
k z2
k

,
*
2m
2m *
Non-equilibrium
2 2
k z2
k

,
*
2m
2m *
if k z  0(k z  0)
E  U ( z0(5) ) 
Effective mass;
Band wrappings
Less then
reference
dimentions
Ballistic, quaziballistic
Drift, diffusion
nL( R )  Nc


Ui 0 ( Ui 5 )
2
Effective mass;
Band wraping;
Envelope wave function
More then
reference
dimensions
 L( R ) (Ez (k z ), z )
Ez  Ui 0( i 5)
2
Local equilibrium
E  U (z) 
2
2 2
k z2
k

*
2m
2m *
Effective mass;
Band wrappings
More then
reference
dimensions
Drift, diffusion

 E  (EФ  U1( N ) )  
ln  1  exp   z
 dEz , Nc 
kБT



2(m * )3/2 k БT
(2)2 3
E  Ui
dE, Nc  4(2m * / h2 )3/2
E
 (EФ  U1( N ) ) 

Ui
1  exp 

kT



ni  Nc 
[email protected]
8
Physical model.
Master equations.
(1 band)
1). Electronconcentrationinquantumregion:
nL( R ) ( z,Uscf ) 
* 3/2
2(m ) kÁT
(2)2 3
 L (Ez (k z ),Uscf ( z, nL( R ) )


Ui 0 (Ui 5 )
Ez  Ui 0( i 5)
2

 E  (EÔ  U1( N ) )  
ln  1  exp   z
 dEz ,

k
T

Á


where U ( z, n( z ))  Ulattice ( z )  Uscf ( z, n( z))
2). Poissonequation :
dU
d
1
( z ) scf    n( z,Uscf ( z ))  N ( z ).
dz
dz
0
Wave functions are solutionsof Schrodinger equations
d  1 d  L( R ) ( z )  2m * (E  U ( z ))
 L( R ) ( z )  0


2
dz  m * ( z )
dz

[email protected]
9
Physical model.
Electrical current.
Coherent component
Coherent component of current flow is well described
by Tsu-Esaki formulation:
2m*ekBT
J  ez
(2 )2 3
T (Ez ) is a transmission
coefficient through


T (Ez )D(Ez )dEz ,where
max(Ui 5 ,Ui 0 )

 E z  (EB  U1 )  
 1  exp  

k
T

Á

D(E z )  ln 

 E z  (EF  UN )  
1

ex
p


 
k
T

B


quantumregion
[email protected]
10
Physical model.
Electrical current.
(!) Coherent component
EFR
UN
T (E z ) depends on
EF
electron states
from both
reservoirs
Ez
U i5
U (z )
EF
electron
states from
left reservoir
EFL
Ui0 0
z0
z5
no
electron
states
L
quantum region
[email protected]
11
z
Physical model. Y?
We need |YL|2 and |YR |2 for calculation of CURRENT and CONCENTRAION
 Which equation YL and YR are eigenfunction of?
– Schrödinger equation with effective mass.
Hˆ   E , where
Hˆ  Tˆ  Ec ( z )  UH ( z )  iWop ,
where:
2

1 
is kinetic energy operator;
2 z m *( z ) z
Ec ( z ) is a bottom of Г-valley;
UH is the Hartree potential;
Wop is so-called “optical” potential, which is modeling escaping of electrons
from coherent channel due to interaction with optical phonons.
Tˆ  
[email protected]
12
2-band model. What for?
0.6
DE L
XL
EAlAs
GaAs

L
EGaAs
L
0.2
0
AlAs
X
X
EGaAs
0.4
GaAs
DE 
0.8
AlAs
X
EAlAs
GaAs
DE X
E,
эВ
b
a
0
b
a
a+b
[email protected]
z
13
2-band model. What for?
E,
эВ
0.8
Г-X-Г
Г-X
0.6
! [100]
0.4
X
Г-X-Г
0.2
0

Г-X mixing points


Current re-distribution between valleys changing of a total current
Electrons re-distribution  changing potential
[email protected]
14
Physical model. YГ, YX?
It was derived from k.p-method that instead of eff.m.Schr.eq. it must be a
following system:
UÃ  UH  E z
  ( x )

i
 2  1 

 ( xi )   à   2 z mà z

U X  UH  E z   X  
0


  
 Ã  0
2
 1    X 

2 z m X z 
0
which “turns on” Г-X mixing at heterointerfaces (points zi) by means of .
It of course reduces to 2 independent eff.m.Shcr.eqs. for X and Г-valley
[email protected]
15
Physical model.
Boundary conditions for Schr. eq.
We have to formulate boundary conditions for Schrödinger equation. They
are quite natural (QuantumTransmissionBoundaryMethod). Wave functions in the
reservoirs are plane waves.
eikz  ikz
rL  e
t R  e  ikz
t L  eik z
e  ik z ik z
rR  e
z
L
R
k
T (E z ) 
tL
k
2
Transmission coefficient needs to be found for current
calculation
[email protected]
16
Physical model. Features




Combined quazi-1D.
Self-consistent (Hartee approach).
Feasibility of 1 or 2-valley approach.
Scattering due to POP and Г-X mixing is taking
into acount.
[email protected]
17
Scientific content circumstantial evidence:
direct use of works on modeling of nanostructures 1971-2010
1.
Moskaliuk V., Timofeev V., Fedyay A. Simulation of transverse electron transport in resonant tunneling diode // Abstracts Proceedings of 33nd International Spring
2.
Seminar on Electronics Technology “ISSE 2010.
Abramov I.I.; Goncharenko I.A.; Kolomejtseva N.V.; Shilov A.A. RTD Investigations using Two-Band Models of Wave Function Formalism // Microwave &
Telecommunication Technolog, CriMiCo 2007. 17th International Crimean Conference (10–14 Sept. 2007), 2007.–P.: 589–590.
3.
Абрамов И.И., Гончаренко И.А. Численная комбинированная модель резонансно-туннельного диода // Физика и техника полупроводников. - С. 1138-1145.
4.
Pinaud O. Transient simulation of resonant-tunneling diode // J. Appl. Phys. – 2002. – Vol. 92, No. 4. – P. 1987–1994.
5.
Sun J.P Mains R.K., Haddad G.I. “Resonant tunneling diodes: models and properties”, Proc. of IEEE, vol. 86, pp. 641-661, 1998.
6.
Sun J.P. Haddad G.I. Self-consistent scattering calculation of Resonant Tunneling Diode Characteristics // VLSI design. – 1998. – Vol. 6, P. 83–86.
7.
Васько Ф.Т. Электронные состояния и оптические переходы в полупроводниковых гетероструктурах. – К.: Наукова Думка, 1993. – 181 с.
8.
Zohta Y., Tanamoto T. Improved optical model for resonant tunneling diode // J.. Appl. Phys. – 1993. – Vol. 74, No. 11. – P. 6996–6998.
2005. – Вып. 39.
9. Mizuta H., Tanoue T. The physics and application of resonant tunnelling diode. – Cambridge University Press, 1993. – 245 c.
10. Sun J.P., Mains R.K., Yang K., Haddad G.I. A self-consistent model of Г-X mixing in GaAs/AlAs/GaAs quantum well using quantum transmitting boundary method // J.
Appl. Phys. – 1993. – Vol. 74, No. 8. – P. 5053–5060.
11. R. Lake and S. Datta. Nonequilibrium “Green’s function method applied to double barrier resonant tunneling diodes”, Phys. Review B, vol. 45, pp. 6670-6685, 1992.
12. Lent C. S. and Kirkner D. J. The quantum transmitting boundary method // Journal of Applied Physics. - 1990. - Vol. 67. - P. 6353–6359.
13. K.L. Jensen and F.A. Buot. “Effects of spacer layers on the Wigner function simulation of resonant tunneling diodes”, J. Appl. Phys., vol. 65, pp. 5248-8061, 1989.
14. Liu H.C. Resonant tunneling through single layer heterostructure // Appl. Phys. Letters – 1987. – Vol. 51, No. 13. – P. 1019–1021.
15. Пакет для моделювання поперечного транспорту в наноструктурах WinGreen http://www.fz-juelich.de/ibn/mbe/software.html
16. Хокни Р., Иствуд Дж. Численное моделирование методом частиц: Пер. с англ. – М.: Мир, 1987. – 640 с.
17. Нгуен Ван Хьюеу. Основы метода вторичного квантования. – М.: Энергоатомиздат, 1984. – 208 с.
18. R. Tsu and L. Esaki. “Tunneling in a finite superlattice”, Appl. Phys. Letters, vol. 22, pp. 562–564, 1973.
19. Самарский А.А. Введение в теорию разностных схем. – М.: «Наука», 1971. – 553 с.
[email protected]
18
Computational methods
Numerical problems and solutions:
?
Computation of concentration n(z) needs integration of stiff function

?
Schrodinger equation have to be represented as finite-difference scheme, assuring conservation, and
needs prompt solution

?
using of conservative FD schemes and integrointerpolating Tikhonov-Samarskiy method;
Algorithm of self-consistence with good convergence should be used to find VH

?
using adaptive Simpson algorithm;
using linearizing Gummel’s method
Efficient method for FD scheme with 5-diagonal matrix solution
(appeared in 2-band model, corresponding to Schrödinger equation)

direct methods, using sparse matrix concept in Matlab (allowing significant memory
economy)
[email protected]
19
Let’s try to simulate
Al0.33Ga0.64As/GaAs RTD
L=100 nm
device
left.r.
right.r.
ND=1024
ND=1024
3 nm
10 nm
i-Al0.33Ga0.67As
4 nm
3 nm
20 nm
i-GaAs
[email protected]
n+-GaAs
20
Application with GUI
[email protected]
21
Emitter
[email protected]
22
Quantum region
[email protected]
23
Base
[email protected]
24
Materials data-base
(1-valley case)
(!) Each layer supplied with
the following parameters:
mГ(x), x – molar rate in
AlxGa1-xAs
mГ(x)=m00+km*x,
DEc(x) – band off-set
DEc(x)=U00*x
(x) is dielectric permittivity
 (x)= e00+ke*x
[email protected]
25
Settings
[email protected]
26
Graphs
[email protected]
27
Calculation: in progress
(few sec for nsc case)
[email protected]
28
Calculation complete
[email protected]
29
Concentration
[email protected]
30
Potential (self-consistent)
[email protected]
31
Concentration (self-consistent)
[email protected]
32
Transmission probability
(self-consistent)
[email protected]
33
Local density of states
g (Ez,z)
(self-consistent)
[email protected]
34
Local density of states
(in new window with legend)
[email protected]
g (Ez,z)
35
Distribution function
(tone gradation)
[email protected]
N (Ez,z)
36
I-V characteristic
(non self-consistent case)
[email protected]
37
Resonant tunneling diode
(2 valley approach)
(!) Each layer supplied with
additional parameters:
mX
DEХ-Г

CB in Г and X-points
[email protected]
38
LDOS in Г and X-valleys
Г-valley
X-valley:
barriers  wells
[email protected]
39
Transmission coefficient
2 valleys
Г – valley only

(*) Fano resonances
(**) additional channel of current
both Г and X valleys
[email protected]
40
Another example:
supperlattice AlAs/GaAs 100 layers
CB profile
LDOS

[email protected]
41
Try it for educational purposes!
Simulation tool corresponding to 1-band model w/o scattering
will be available soon at: www.phbme.ntu-kpi.kiev.ua/~fedyay
(!) Open source Matlab + theory + help
Today you can order it by e-mail: [email protected]
2-band model contains unpublished results
and will not be submitted heretofore
THANK YOU FOR YOUR ATTENTION
[email protected]
42