chapter 13 Partial differential equations

Download Report

Transcript chapter 13 Partial differential equations

Mathematical methods in the physical sciences 3nd edition Mary L. Boas
Chapter 13 Partial differential equations
Lecture 13 Laplace, diffusion, and wave equations
1
1. Introduction (partial differential equation)
ex 1) Laplace equation
2
2
2
 ux, y, z   0  2 u  2 u  2 u  0
x
y
z
2
: gravitational potential, electrostatic potential, steady-state
temperature with no source
2u  f x, y, z 
ex 2) Poisson’s equation:
: with sources (=f(x,y,z))
ex 3) Diffusion or heat flow equation
 2u  x, y , z , t  
1 
u x, y, z, t  ( : diffusivit y)
 2 t
2
1  2u
ex 4) Wave equation  u  2 2
v t
2
ex 5) Helmholtz equation 2 F  k 2 F  0
: space part of the solution of either the diffusion or the wave equation
3
2. Laplace’s equation: steady-state temperature in a rectangular plate
(2D)
In case of no heat source
 2T  2T
 T  0 or
 2 0
2
x
y
2
T o solve this equation, we try a solution of the form,
T x, y   X x Y  y ,
 X ( x) : a function only of x,

 Y ( y ) : a function only of y.

"Separation of variables"
4
 2T  2T
 2 XY  2 XY
 2 0

0
2
2
2
x
y
x
y
d2X
d 2Y
1 d 2 X 1 d 2Y
 XY
Y
 X 2  0 


 0,
2
2
2
dx
dy
X dx
Y dy
1 d2X
1 d 2Y

2
X dx
Y dy2
t above equation with the variable- separated sides,
T o satisfy he
1 d 2Y
1 d2X
2
(separationconstant k  0)
k


.
const



Y dy2
X dx2
 X    k 2 X and Y   k 2Y .
sin kx,
X 
coskx,
e ky ,

Y 
 ky
e ,
e ky sin kx

e  ky sin kx
T  XY  
ky
e coskx
  ky
e coskx
5
e ky sin kx

e  ky sin kx
General solut ion: T  XY  
ky
e coskx
  ky
e coskx
1) In the current problem, boundary conditions are
i ) T  0 as y  .  discard e ky
ii) T  0 when x  0.  discard coskx
iii) T  0 when x  10. sin 10k  0  k  n / 10
iv) T  10 when y  0.

nx
nx
T  exp[ny / 10]sin
 T   bn sin
 100.
10
10
n 1
6

nx
nx
T  exp[ny / 10] sin
 T   bn sin
 100.
10
10
n 1
Using theFourier series,
10
2 l
nx
2 10
nx
10 
nx 
bn   f ( x) sin
dx   100sin
dx  20 

cos


l 0
l
10 0
10
n 
10  0
 400
, odd n,

200
n
 1  1   n

n
 0, even n.



T
400
x 1  3y / 10 3x

sin
 .
 exp[ny / 10] sin  e
 
10 3
10

ex.
At x  5 and y  5, T  26.1
7
2) How about changing the boundary condition? Let us consider a
finite plate of height 30 cm with the top edge at T=0.
T=0 at 30 cm
In this case, e^ky can not be discarded.
e  ky  ae ky  beky
T  0 at y  30  12 e k 30  y   12 e  k 30  y  ( thatis, a  12 e30 k , b   12 e  30 k )  sinh k 30  y 

T   Bn sinh
n 1
n
30  y sin nx
10
10
nx 
nx
 100   Bn sinh 3n sin
  bn sin
, where bn  Bn sinh 3n .
10
10
n 1
n 1

Ty  0
T 

odd n
1
n
 400
30  y   sin nx
 sinh


10
10
 n  sinh 3n
8
- To be considered I
e kx sin ky
  kx

e sin ky
We could have another general solution,T  XY  
, for  k 2 .
kx
e cosky
  kx

e cosky
This is correct, but makes the problem more complicated.
(Please check the boundary condition.)
- To be considered II
In case that the two adjacent sides are held at 100 (ex. C=D=100),
the solution can be the combination of C=100 solutions (A, B, D: 0)
and D=100 (A, B, C: 0) solutions.
9
-. Summary of separation of variables.
1)
2)
3)
4)
5)
A solution is a product of functions of the independent variables.
Separate partial equation into several independent ordinary equation.
Solve the ordinary differential eq.
Linear combination of these basic solutions
Boundary condition (boundary value problem)
10
3. Diffusion or heat flow equation; heat flow in a bar or slab
- Heat flow :  2u 
u  F  x, y, z T t 
T 2 F 
1
2
F
1 u
.
 2 t
"Separation of variables"
dT
1
1 1 dT
 2 F  2
 k 2 .
dt
F
 T dt
1 2
1 1 dT
2
 F  k 2 ,


k
F
 2 T dt

 F  k F ,
2
2

dT
2 2
 k 2 2 t
 k  T T  e
dt

cf. “Why do we need to choose –k^2, not +k^2?”
11
Let’s take a look at one example.
At t=0, T=0 for x=0 and T=100 x=l.
From t=0 on, T=0 for x=l.
In case of this 1 - D problem,
 sin kx, 
1 2
d 2F
2
2

 F  k  2  k F  0  F  

F
dx
 coskx 
 e  k  t sin kx
u   2 2
 k  t
coskx
e
2
2
For T(x=0)=0 and T(x=l)=100 at t=0, the initial steady-state
temperature distribution:
d 2u0
 u0  0 (no heat source) 
0
2
dx
100
u0  ax  b  u0 
x
l
2
12
1) u  0 when x  0.  discard cos kx
- Using Boundary condition
2)u  0 when x  l. sin kl  0  kl  n
ue
  n / l 2 t

2
nx
nx
sin
 u   bn e  n / l  t sin
l
l
n 1
At t  0, u  u0

u   bn sin
n 1
nx
100
 u0 
x.
l
l
100 2l 1
 1n 1  200  1
bn 
l  n

n
n 1
u
200    / l 2 t
x 1  2 / l 2 t
2x 1  3 / l 2 t
3x

e
sin

e
sin

e
sin


.


 
l 2
l
3
l

13
For some variation, when T0,
we need to consider uf.as the final state, maybe a linear
In this case, we can write down the solution simply like this.

u   bn e  n / l  t sin
n 1
2
nx
 uf .
l

nx
nx
u0   bn sin
 u f  u0  u f   bn sin
.
l
l
n 1
n 1

14
4. Wave equation; vibrating string
node
Under the assumption that the string is not stretched,
2 y 1 2 y

x 2 v 2 t 2
x=0
x=l
y  X x T t 
1 d2X
1 1 d 2T
2
2
2 2







const
.


k

X

k
X

0
and
T

k
v T  0.
2
2
2
X dx
v T dt
  frequency(sec-1 ),
  wavelength
  2  angular frequency(radians)
k
2


2 
  wave number.
v
v
15
sin kx,
X 
coskx,
sin kx sin t

sin kvt,
sin kx cost
T 
 y  XT  
, where   kv.
coskvt,
coskx sin t
coskx cost

Boundarycondition: y  0 at x  0, x  l.
nvt
 nx
sin
sin

l
l
 y
sin nx cos nvt .

l
l
16
nvt
 nx
sin
sin

l
l

y
sin nx cos nvt

l
l


nvt
 nx
sin
cos

l
l

y  
sin nx sin nvt

l
l

1) case 1
For y (t  0)  f ( x) and y '  0, sin nvt / l  should be discarded.

 y   bb sin
n 1

y0   bn sin
n 1
nx
nvt
cos
.
l
l
nx
 f x .
l
After finding the Fourier series coefficients,
y
8h  x
vt 1 3x
3vt

sin
cos

sin
cos




9
2 
l
l
l
l

17
nvt
 nx
sin
sin

l
l
y
sin nx cos nvt .

l
l
2) case 2
For y (t  0)  0 and y0 '  0, cosnvt / l  should be discarded.

 y   Bn sin
n 1
nx
nvt
sin
.
l
l

nv
nx 
nx
 y 

B
sin

b
sin
 V x  (Use Fourier series expansion.)
 


n
n
l
l
l
 t t  0 n 1
n 1
18
3) Eigenfunctions
nx
nvt
sin
: a characteristic function or eigenfunction
l
l
n  nv / l  2 n : characteristic frequency
y  sin
A vibration with a pure freuquencyis called thenormalmode of vibration.
first harmonic, fundamental second harmonic
third
fourth
19
Mathematical methods in the physical sciences 2nd edition Mary L. Boas
Chapter 13 Partial differential equations
Lecture 14 Using Bessel equation
20
5. Steady-state temperature in a
cylinder
For this problem, cylindrical coordinate (r, , z) is more us
1   u  1  2u  2u
u
 2 0
r   2
2
r r  r  r 
z
2
u  Rr  Z z 
P utting this into the equation, and dividing with u  RZ ,
1 1 d  dR  1 1 d 2 1 d 2 Z

0
r

2
2
2
R r dr  dr   r d
Z dz
21
1 1 d  dR  1 1 d 2 1 d 2 Z

0
r

2
2
2
R r dr  dr   r d
Z dz
In order to say that a term is constant,
1) function of only one variable
2) variable does not elsewhere in the equation.
- 1st step
1 1 d  dR  1 1 d 2
1 d 2Z

 k 2
r

2
2
2
R r dr  dr   r d
Z dz
 e kz
1 d 2Z
2
 k ,Z  
.
2

kz

Z dz
e
Because u ~ 0 at z  ,
u ~ e  kz .
22
- 2nd step
1 1 d  dR  1 1 d 2
r d  dR  1 d 2
r 2
2
 k  0 
 r 2k 2  0
r

r

2
2
2
R r dr  dr   r d
R dr  dr   d
Here,
 sin n ,
1 d 2
2



n
,


2
 cosn .
 d

- 3rd step




r d  dR  2
d  dR 
2 2
2 2
2
2
2 2
2
r
  n  k r  0  r r
  k r  n R  0  r R  rR  k r  n R  0
R dr  dr 
dr  dr 





" Bessel equation": x xy  x 2  p 2 y  x 2 y  xy  x 2  p 2 y  0
 Solut ion of the Bessel equations: J n kr  (Bessel),
N n kr  (Neumannor Weber).
Here, we take only R ~ J n (kr), because N n kr    at r  0.
- Boundarycondition: Rr 1  J n k   0.
 J n kr sin ne  kr
u  RZ  
, where k is a zero of J n .
 J kr cosne  kr
 n
23
In azimuthalsymmetry,n  0  J 0 km   0 ( J n : oscillating function)

 u   cm J 0 km r e k m z .
n 1

Boundarycondition: u z  0   cm J 0 km r   100.
n 1
Here, using theorthogonal
ity of the Bessel function,
1

0

rJ 0 k  r  cm J 0 km r dr   100 rJ 0 k  r dr
1
0
n 1
Only if   m, we have the non - zero termin the left side.
 cm  r J 0 km r  dr   100rJ 0 km r dr.
1
2
0
1
0
left term:  rJ 0 km r  dr  12 J12 km .
1
2
0
J p (a )  0  J p (b)
 0, if a  b
0 xJ p axJ p bxdx   1 J p2 1 a   1 J p2 1 a   1 J p21 a , if a  b
2
2
2
1
24
cm  rJ 0 km r  dr   100rJ 0 km r dr.
1
2
0
1
0
For the right term:
 rJ 0 km r  
d
xJ1 x   xJ0 x  (recusion relation)
dx
1 d
km rJ1 km r   km rJ 0 km r ,
 For x  km r ,
km dr
1 d
rJ1 km r 
km dr
1
1
1




rJ
k
r
dr

rJ
k
r

J1 km .
1 m
0 0 m
km
k
m
0
1
Combiningtwo results,


cm  r J 0 km r  dr   100rJ 0 km r dr  cm 12 J12 km  
1
0
 cm 
2
1
0
100J1 km 
km
100J1 km 
2
200
 2

km
J1 km  km J1 km 
25
If thegiven temperatureof thebase of thecylinderis f r , ,   1, but an cosn  bn sin n .


 u   J n kmn r amn cosn  bmn sin n e  k mn z .
m 1 n  0


u z  0   J n kmn r amn cosn  bmn sin n   f r , .
m 1 n  0
Because of theorthogonality,
1 2

0 0
f r , J k r cosrdrd  a 
1 2
 a  12 J21 k    .
Similarly, b 
2
J

0 0
2
 1
1 2
k   
0 0
J k r cos2 rdrd
2
f r , J k r sinrdrd .
26
Bessel’s equation
- Bessel’s equation
1) Equation and solution
- named equation which have been studied extensively.
- “Bessel function”: solution of a special differential equation.





xxy  x 2  p 2 y  x 2 y  xy  x 2  p 2 y  0
- being something like damped sines and cosines.
- many applications.
ex) problems involving cylindrical symmetry (cf. cylinder function); motion
of pendulum whose length increases steadily; small oscillations of a flexible
chain;
railway transition curves; stability of a vertical wire or beam;
Fresnel integral in optics; current distribution in a conductor; Fourier series
for the arc of a circle.
27
Bessel’s equation





xxy  x 2  p 2 y  x 2 y  xy  x 2  p 2 y  0
- Solution :
2n  p
n


 1
 x
p 1  x


J p x   
,
where

p

x
e dx   p  1!,
 

0
n  0 n  1n  p  1  2 
cosp J p x   J  p x 
N p x  
(Neumann or Weber)

p  0.
sin p
 generalsolution y  AJ p x   BN p x 
- Graph
28
Bessel’s equation
2) Recursion relations


4)
d p
x J p x   x p J p 1 x 
dx
d p
x J p x    x  p J p 1 x 
dx
2p
J p 1 x   J p 1 x  
J p x 
x
J p 1 x   J p 1 x   2 J p x 
5)
J p x   
1)
2)
3)


p
p
J p x   J p 1 x   J p x   J p 1 x 
x
x
29
Bessel’s equation
3) Orthogonality
cf. Comparison
J p x , N p x 
consider just J p x  for one value of p
x  a, b,, J p x   0
x  1, J p ax  0, J p bx  0,
2

For y  sin nx, y  n  y  0 For J p ax, xxy  a 2 x 2  p 2 y  0
sin x, cos x
consider just sin x
x  nx, sin x  0
x  1, sin nx  0
1
 sin nx sin mxdx  0,
0
for n  m,

 xJ axJ bxdx  0,
1
0
p
p

for a  b
30
Bessel’s equation





xxy  x 2  p 2 y  x 2 y  xy  x 2  p 2 y  0



 xxy  a 2 x 2  p 2 y  0
J p (a)  0  J p (b)
 0, if a  b
0 xJ p axJ p bxdx   12 J p21 a   12 J p21 a   12 J p21 a , if a  b

1
31
6. Vibration of a circular membrane (just like drum)
1 2 z
 z 2 2
v t
2
z  F x, y T t    2 F  k 2 F  0 and T  k 2v 2T  0
1   F  1  2 F
In polarcoordinate,
 k 2 F  0.
r
 2
2
r r  r  r 
F  Rr  . P utting this form into the above equation, and then dividing with F ,
1 1 d  dR  1 1 d 2
 k2  0
r
 2
2
r R dr  dr  r  d
1 d 2
d 2
2
2


n


n
  0 (simple harmonic equation)
2
2
 d
d
r


d  dR 
2
2 2
r
   n  k r R  0 (Bessel's equation)
dr  dr 
sin n sin kvt

 sin n  sin kvt 
sin n coskvt

  J n kr 
 z  Rr  T t   J n kr 
 cosn  coskvt 
cosn sin kvt
cosn coskvt

32
sin n sin kvt

sin n coskvt
z  Rr  T t   J n kr 
cosn sin kvt
cosn coskvt

Boundarycondit ion: z (r  1)  0  J n k   0.
 kmn : zerosof J n (double series)
 Characteristic freuqency of thenormal modes:  mn  kmn v / 2 
cf. They are not integral multiples of the fundamental as is true for the
string (characteristics of the bessel function). This is why a drum is less
musical than a violin.
33
ex) z  J n kmn r cosn coskmn vt
34
(m,n)=(1,0)
(2,0)
(1,1)
American Journal of Physics, 35, 1029 (1967)
35
Mathematical methods in the physical sciences 2nd edition Mary L. Boas
Chapter 13 Partial differential equations
Lecture 15 Using Legendre equation
36
7. Steady-state temperature in a sphere
- Sphere of radius 1 where the surface of upper half is 100, the other is 0 degree
1   2 u 
1
 
u 
1
 2u
 u  2 r
0
 2
 sin 
 2 2
2
r r  r  r sin   
  r sin  
2
1 d  2 dR  1 1 d 
d  1 1 d 2
For u  Rr    ,
0
r

 sin 

R dr  dr   sin  d 
d   sin 2  d 2
sin m
1 d 2
2
 m ,   
 d 2
cosm
1 d  2 dR  1 1 d 
d 
m2
 0.
r

 sin 

R dr  dr   sin  d 
d  sin 2 
r l
1 d  2 dR 
 R  
r
k
R dr  dr 
1 / r l 1
1 d 
d 
m2
 sin 
  2   k  0 (Associat ed Legendre equat ion k  l l  1)
sin  d 
d  sin 

   Pl m cos  (Legendre polynomial
).
37
1) For the interior of the sphere, no divergence. T herefore,discard 1/ r l 1.
sin m
u  r Pl cos 
cosm
l
m

2) Due to the azimuthal symmetry,m  0 
 u   cl r l Pl cos 
l 0
100, 0     / 2
3) ur 1   cl Pl cos   
 /2  
l 0
0,

0,  1  x  0,
or ur 1   cl Pl cos   100 f  x , where f x   
l 0
1, 0  x  1.

In thiscase, we can expandthisin a series of Legendrepolynomina
ls
f x   12 P0  x   34 P1 x   167 P3 x   11
P  x    (Here, x  cos )
32 5

 c P cos   100 P cos  
l 0
1
2
l l
0
3
4
P1 cos   167 P3 cos   11
P cos   
32 5
1
3
7
c0  100 , c1  100 , c2  100  ,.
2
4
16


5
 u  x   100 12 P0 cos   34 rP1 cos   167 r 3 P3 cos   11
r
P5 cos   
32
38
Legendre’s equation
- Legendre’s equation
1) Equation and solution
i. .m  0 (Legendre equation)

l



l
1 d  2
1  x 2 y  2 xy  l l  1 y  0  Solution : Pl  x  
  x 1 .
2!l!  dx 
ii. m  0 (Associated Legendre equation)

m2 
1  x y  2 xy  l l  1 
y0
2
1 x 


2


 Solution : Pl  x   1  x
m
For
m  l , Pl m  0


2 m/2
m
d 
  Pl  x   l  m  l .
 dx 
1 d 
d 
m2
cf .
  l l  1  0 (Associated Legendre equation).
 sin 

sin  d 
d  sin 2 
39
Legendre’s equation
1 d 
d 
m2
cf .
 l l  1  0 (Associated Legendre equation)
 sin 

sin  d 
d  sin 2 
1
d d cos 
d d cos 
m2
  l l  1  0
 sin 

sin  d cos x d 
d cos d  sin 2 
d  2
d 
m2
 sin 
  2   l l  1  0
d cos x 
d cos  sin 
d 
d 
m2
2
  l l  1  0
 1  cos 

d cos x 
d cos  1  cos2 


d 2
d
m2
1  cos 
 2 cos

  l l  1  0
d cos x 2
d cos 1  cos2 

2

d 2
d
m2
1 x
 2x

  l l  1  0
2
2
dx
dx 1  x

2

40
Legendre’s equation
- Legendre polynomials
- Associated Legendre polynomials
P0  x   1
Pl  m x    1
m
P1 x   x
P2  x  


P10  x   x



P11  x    1  x 2


1
cf . x  3P1 x   2 P3 x 
5

1/ 2
P2 2  x  


3
1
P11  x    P11  x 
2

1 2
3x  1
2
1
P3 x   5 x 3  3x
2
1
P4  x   35x 4  30x 2  3
8
1
P5 x   63x 5  70x 3  15x
8
1
P6  x  
231x 6  315x 4  105x 2  5
16
l  m! P m x 
l  m! l

1 2
P2  x 
24
1
P21  x    P21  x 
6
1
P20  x   3 x 2  1
2



P21  x   3 x 1  x 2

P22  x   3 1  x 2


1/ 2

41
Legendre’s equation
2) Orthogonality
2
2








P
x
dx

P
cos

sin d 
1 l
0 l

1
 P
1
1
l
m
2
.
2l  1
2
2 l  m!
Pl m cos  sin d 
.
2l  1 l  m!
x 2 dx  0 


cf .x  cos  dx  sin d
42
8. Poisson’s equation
  F  0 (F : conservative)  F  V
1) For gravit ational force,   F  4G   2V  4G : Poisson equation
cf.   0   2V  0 : Laplace equation
2) For electrostatic force,   E  4   2V  4 (in Gaussian unit ).
cf.   0   2V  0
In general,  2u x, y, z   f x, y, z 
u
1
4
f x, y, z
   x  x   y  y  z  z
2
2
2
dxdydz.
 2 w  0 (Laplaceequation)
 2 u  w   2u   2 w  f  u  w : solutionof Poissonequation
43
Example 1
 2V  4
V  x, y , z   
1
4
 4 x, y, z
   x  x   y  y  z  z
2
2
2
dxdydz 
q
x  y  z  a 
2
2
2
.
In sphericalcoordinat e,
Vq 
q
r  2ar cos  a
2
2
.
r l  m
sin m 
Basic solution of Laplaceequation 
Pl cos 
 r  l 1Pl cos 


r  l 1 
cosm 
1) zero at infinite discard r l



 2) symmet ricabout z - axis  solutionis indep.of  .  m  0, cosm  1


V  Vq   cl r  l 1Pl cos 
l
grounded sphere
44
Boundarycondition: V  0 for r  R.
Vr  R 
Using
  cl R  l 1Pl cos   0.
q
R 2  2aR cos  a 2
l
R l Pl cos 
 q
,
l 1
2
2
a
R  2aR cos  a
l
q
R l Pl cos 
q
  cl R  l 1Pl cos 
l 1
a
l
l
From this relation, cl R
V 


qRl
qR2l 1
  l 1 or cl   l 1 .
a
a
R 2l 1r  l 1Pl cos 
 q
2
2
a l 1
r  2ar cos  a
l
q
q
r  2ar cos  a
2
2
q
r  2ar cos  a
2
 l 1
2
 q ( R / a )
R / a  P cos 
2
r
l


l
l
l 1
R / a q



r  R / a  2r R / a cos
2
2
2
2

‘Method of the images’
.
In thesecond term,charge: R / a q, position: 0,0,R 2 / a

45
cf. Electric multipoles
monopole
dipole
quadrupole
octopole
2) Expansion for the potential of an arbitrary localized charge distribution
V r  
1
4 0

1
 rdr 
r  r
2



r


 r 
2
2





r  r  r  r   2rr cos  r 1     2  cos 
r
  r 

2
2
 r   r 

r  r  r 1   , where      2 cos  
 r  r

1
1
1 1
3
5

1 / 2
 1     1     2   3  
r  r r
r 2
8
16

46
2
2
3
3

1
1  1  r   r 
5  r   r
 3  r   r


 1     2 cos        2 cos        2 cos    

r r
r  2  r  r
 8 r   r
 16  r   r


2
3


1   r 
r 
r



2
3




 1   cos     3 cos   1 / 2    5 cos   3 cos / 2  
r   r 
r
r


1   r 
    Pn cos 
r n 0  r 



n
V r  
-

1
4 0
n
n
n
n
=
=
=
=
0
1
2
3
Legendrepolynomina
l
 r    r P cos  rd  multipoleexpansion
n 0
:
:
:
:
1
n 1
n
n
monopole contribution
dipole
quadrupole
octopole
47