HiRadMat-Window-v3.0

Download Report

Transcript HiRadMat-Window-v3.0

HiRadMat Window Design report

v3.0

Michael MONTEIL - 12 April 2010 1

Specifications v3.0

• Interface between machine vacuum and Atmospheric pressure 10 -8 mbar / P atm  Protective atmosphere !!!

• Aperture min 60 mm • Resist to a proton beam size on the window : 1 s = 0.5 mm

“Beam Size at the TT66 Vacuum Window”, C. Hessler, 26.02.2010

Michael MONTEIL - 12 April 2010 2

Solution

#5

: Be + C-C

• Same as solution #4 but the pressure load is supported by a C-C plate ⁺ Simple window assembly ⁺ Thin thickness (no differential pumping…) ⁺ Be cannot pollute vacuum chamber unless C-C fail ⁺ Tight ⁻ Price of Be but no pumps Michael MONTEIL - 12 April 2010 3

Solutions - Sum-up

• • • • • #1: C-C

(Differential pumping)

– Protective atm (Nitrogen ?) – Radiations?

#2: C-C + Graphite foil (useless now) #3: Tight steel “ring” with a C-C plate #4: Beryllium – Safety problem #5: C-C + Beryllium  Today Michael MONTEIL - 12 April 2010 4

Different grades of Be

Michael MONTEIL - 12 April 2010 Data: Brush Wellman 5

Different grades of Be

• PF-60 ?

– Low rate of Beryllium oxide compare to PS-200 – Good quality-price ratio (Next slides…) • 1.5 to 2 time cheaper than IF-1 – Almost the same temperature distribution as pure Be and IF-1 (IF-1 a bit better…) – Used in CNGS… Collaboration: J. Blanco Michael MONTEIL - 12 April 2010 6

Design

• Specification – Be & C-C – Aperture min. 60mm – DN80 or DN60 conical flange connection – 15 cm depth maximum • Remark – Cannot machine Be at CERN Michael MONTEIL - 12 April 2010 7

Design

• Common design – Choices – Standard flanges only (cheaper) – Be window assembled in lab between 2 flanges (safety) – Conical flange (faster assembly once in experimental area)  Design  Conical Flange (plug-in flange)  Tube (connection conical flange <--> conflat flange)  2 x Conflat (Window in-between) Michael MONTEIL - 12 April 2010 8

CNGS

“CNGS” like

HiRadMat – Option 1

Nota: Those drawing are drafts. Above dimensions are not representative of the reality Michael MONTEIL - 12 April 2010 9

“CNGS” like

Michael MONTEIL - 12 April 2010 Data: Brush Wellman 10

“CNGS” like

Michael MONTEIL - 12 April 2010 Data: Brush Wellman 11

“TED @ TI2, TT40” – Beryllium version

“TED @ TI2, TT40” HiRadMat – Option 2

Michael MONTEIL - 12 April 2010 12

“TED @ TI2, TT40” – Beryllium version

• Quote from BW Michael MONTEIL - 12 April 2010 13

2 design proposals

Option 1

+ Life warranty on Be + flange assembly + Easy to assembly + Standard conflat assembly + Tightness OK - Not that much

Option 2

+ Not that much - Precautions for the assembly - Non Standard conflat assembly (Tightness) - Might be careful to not cut (shear cut) the Be foil during assembly Nota: Those drawing are drafts. Above dimensions are not representative of the reality Michael MONTEIL - 12 April 2010 14

2 design proposals Cost estimation Be Foil

Option 1

• Number of flange to order : 2 – – Spare : 1 Window installed : 1 •

Option 2

Number of foil to order : 3 – – – Spare : 1 Window installed : 1 “In case we break a foil while assembling” : 1 Nota: Those drawing are drafts. Above dimensions are not representative of the reality Michael MONTEIL - 12 April 2010 15

2 design proposals Cost estimation Be Foil

Option 1 Flange

Foil Quantity Flange Grade 0.254 mm 0.254 mm 0.381 mm 1

2552 3266

2552 3266

2

5104

2552

6532

3266

6384 7656 9798

IF-1 3

2128 2552 3266

8228 10208 13064

4

2057 2552 3266

10220 12760 16330

5

2044 2552 3266

Foil Grade Quantity Flange 0.254 mm 0.254 mm 0.381 mm 1

1944 1903

1944 1903

2

3888 3806

1944 1903

3192 5832 5709

PF-60 3

1064 1944 1903

3968

4

7776 7612

992 1944 1903

4895

5

9720 9515

979 1944 1903

Option 2 Foil

Foil Quantity 0.254 mm Flange Grade 0.254 mm

1890

1

1890

3780

2

1890

PS-200 3

5670 -

1890

7560

4

-

1890

9450

5

-

1890

0.381 mm

1866

1866

3732

1866

5598

1866

7464

1866

9330

1866

Nota: Those drawing are drafts. Above dimensions are not representative of the reality Michael MONTEIL - 12 April 2010 16

About thickness, how does BW design their own Be foils?

Data: Brush Wellman With (Thickness 0.25mm, radius 35mm, pressure 1.01 kPa, E 303Gpa, Poisson 0.08) Results – s edge = 305MPa > 275 Mpa !!

– s center = 297Mpa > 275 Mpa !!

Michael MONTEIL - 12 April 2010 17

However…

• BW : “With

confirm that your calculations with reference to the DB450277 assembly are correct and show over the recommended values, however, the assembly was designed using empirical data as well taking into consideration the calculated values. We have performed tests on this design and found it to be reliable, with units sold to customers over the years performing

well under real-life conditions.” • Explanation – Because of plasticity effects, Be foil withstands 1 Atm (according to BW tests) even if Roark’s calculation says that it doesn’t withstand Michael MONTEIL - 12 April 2010 Data: Brush Wellman 18

To know

• • Be have ultra high resistance to fatigue cracking High endurance strength level Michael MONTEIL - 12 April 2010 Data: Brush Wellman 19

Solutions #5

stresses and deflection - C-C+Be under D P = 1 atm • • • • Linear circular fixed support 2 planes of symmetry Geometry – Diameter f 80 mm – – Thickness: 0.254 mm Aperture: f 60 mm Pressure 1 atm Michael MONTEIL - 12 April 2010 20

ANSYS Study - Solutions #5

stresses and deflection - C-C+Be under D P = 1 atm • Beryllium foil study – Smooth and continuous temperature distribution – Through-thickness energy deposition – Coefficient of Thermal Expansion varying with temperature – Be (pure elasticity): • Poisson’s ratio = 0.08

• High R e = 303 Mpa Michael MONTEIL - 12 April 2010 21

Michael MONTEIL - 12 April 2010 22

Michael MONTEIL - 12 April 2010 23

Michael MONTEIL - 12 April 2010 24

Michael MONTEIL - 12 April 2010 25

Michael MONTEIL - 12 April 2010 26

Michael MONTEIL - 12 April 2010 27

Michael MONTEIL - 12 April 2010 28

Michael MONTEIL - 12 April 2010 29

Michael MONTEIL - 12 April 2010 30

Michael MONTEIL - 12 April 2010 31

Michael MONTEIL - 12 April 2010 32

Conclusion: influence of gap reducing

• So if we flatter the foil on the C-C, we reduce the Max stress (as shows ANSYS calculation with non plasticity model), maybe also stay in elastic domain (Bellow 275Mpa at room Temp).

 We will manage to reduce this gap (flattering the Be foil as much as possible on C-C plate) Michael MONTEIL - 12 April 2010 33

Easiness to reduce Gap C-C / Be

Option 1 Option 2

Michael MONTEIL - 12 April 2010 34

To do :

• • • Order Beryllium – Delivery: 4 Weeks ARO for flanges (Option 1) – Delivery: 6 Weeks ARO fro foil (Option 2) Assembly Test Michael MONTEIL - 12 April 2010 35

Michael MONTEIL - 12 April 2010 36

V2.0 slides

Michael MONTEIL - 12 April 2010 37

Window geometry – C-C option

• Carbon/Carbon composite: 1501 G from SGL • Cylindrical window • Diameter – f Aperture f 80 mm 60 mm • • Thickness: 0.5 cm Aperture (

flange internal diameter

): f 60 mm Michael MONTEIL - 12 April 2010 38

Solutions #1 for C-C tightness problem: Differential vacuum (V2.0)

1 Window C-C – Pumping speed needed: 2.3

x 10 8 l/s … • 2 Windows C-C with differential pumping – Pumping speed needed: 8.94

x 10 2 l/s OK !

• 3 Windows C-C with differential pumping – Pumping speed needed: 13 l/s Too low ?!

Michael MONTEIL - 12 April 2010 39

Solutions #1

• What about radiations in this area ?

– Possible maintenance needed on the roots pump… • Protective atmosphere • Decreasing pressure in Vacuum side with serial pumps Michael MONTEIL - 12 April 2010 40

C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 0.5

2.83E+00 1.00E+03 P 2 3.16E-03 Window 2 6 5.00E-02 2.83E+01 0.5

8.94E-06 3.16E-03 P 3 1.00E-08 2.83E+00 8.94E+02

3218.8

8.94E-06 894.1101

3218.8

Reference

C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 0.5

2.83E+00 1.00E+03 P 2 1.00E-02 Window 2 6 5.00E-02 2.83E+01 0.5

2.83E-05 1.00E-02 P 3 1.00E-07 2.83E+00 2.83E+02

1017.9

2.83E-05 282.7405

1017.9

C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 0.5

2.83E+00 1.00E+03 P 2 3.16E-02 Window 2 6 5.00E-02 2.83E+01 0.5

8.94E-05 3.16E-02 P 3 1.00E-06 2.83E+00 8.94E+01

321.87

8.94E-05 89.40847

321.87

• C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 0.5

2.83E+00 1.00E+03 2.83E+00 P 2 5.00E-03 Window 2 6 5.00E-02 2.83E+01 0.5

1.41E-05 5.00E-03 P 3 1.00E-08 5.65E+02

2035.7

1.41E-05 1413.714

5089.4

C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 1 1.41E+00 1.00E+03 1.41E+00 P 2 3.16E-03 Window 2 6 5.00E-02 2.83E+01 1 4.47E-06 3.16E-03 P 3 1.00E-08 4.47E+02

1609.4

4.47E-06 447.0551

1609.4

P2 : Roots pump • 100 –> 1500 m 3 /h • 10 -3 -> 10 Bar • P3 : Ion pump • 400 l/s Michael MONTEIL - 12 April 2010 41

Solutions #2 for C-C tightness problem: Add a Graphite foil (v1.0) Solution #3 : Tight steel“ring” with a C-C plate (v1.0) Solution #4 : Beryllium Michael MONTEIL - 12 April 2010 42

Michael MONTEIL - 12 April 2010 43

ANSYS Study - Solutions #1

stresses and deflection - C-C under D P = 1.4atm • • • • Linear circular fixed support 2 planes of symmetry Geometry – Diameter f 80 mm – – Thickness: 5 mm Aperture: f 60 mm Pressure 1.4 bar Michael MONTEIL - 12 April 2010 44

ANSYS Study - Solutions #1

stresses and deflection - C-C under D P = 1.4atm • • Orthotropic properties : 18 plies [0°/90°…] Smooth and continuous temperature distribution • • Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature and directions Michael MONTEIL - 12 April 2010 45

C-C - Pressure load - Deflection

7.4 μm Michael MONTEIL - 12 April 2010 46

C-C - Pressure load – Von-Mises

5.9 Mpa Michael MONTEIL - 12 April 2010 47

C-C - Pressure load – Tsaï-Wu

Michael MONTEIL - 12 April 2010 48

T (°C) •

C-C - Thermal load

ANSYS input = FLUKA output

C-C | 1 s = 0.5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field T (°C) Radial R (cm) Michael MONTEIL - 12 April 2010 Depth Z (cm) 49

C-C - Pressure + Thermal load – Deflection

10.6 μm Michael MONTEIL - 12 April 2010 50

C-C - Pressure + Thermal load – Von-Mises

31 Mpa Michael MONTEIL - 12 April 2010 51

C-C - Pressure + Thermal load – Tsaï Wu

Michael MONTEIL - 12 April 2010 52

Michael MONTEIL - 12 April 2010 53

ANSYS Study - Solutions #4

stresses and deflection - Be under D P = 1.4atm • • • • Linear circular fixed support 2 planes of symmetry Geometry – Diameter f 80 mm – – Thickness: 0.254 mm Aperture: f 60 mm Pressure 1.4 bar Michael MONTEIL - 12 April 2010 54

ANSYS Study - Solutions #4

stresses and deflection - Be under D P = 1.4atm • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature • Be: – Poisson’s ratio = 0.1

– – High R e High R m = 275 Mpa = 551 MPa Michael MONTEIL - 12 April 2010 55

Be - Pressure load - Deflection

0.81 mm Michael MONTEIL - 12 April 2010 56

Be - Pressure load – Von-Mises

319 Mpa Michael MONTEIL - 12 April 2010 57

Be - Pressure load – Safety factor Ult. Strength 1.7

Michael MONTEIL - 12 April 2010 58

Be - Thermal load

ANSYS input = FLUKA output

Be | 1 s = 0. 5 mm | 1.7e11 p+ | 288 bunches • T (°C) Axisymmetrical radial temperature field T (°C) Z (cm) Radial Be Michael MONTEIL - 12 April 2010 Z (cm) 59

Be - Pressure + Thermal load – Deflection

0.8

mm Michael MONTEIL - 12 April 2010 60

Be - Pressure + Thermal load – Von-Mises

315 Mpa Michael MONTEIL - 12 April 2010 61

Be - Pressure + Thermal load – Safety factor Ult. Strength 1.7

Michael MONTEIL - 12 April 2010 62

ANSYS Study - Solutions #5

stresses and deflection - C-C+Be under D P = 1.4atm 2 Studies – C-C (See Solution #4) • Pressure load • Pressure + Temperature loads – Be (Following slides) • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side + Temperature load • • • 2 planes of symmetry Geometry – Diameter – – f 80 mm Thickness • C-C: 5 mm • Be: 0.254 mm Aperture: f 60 mm Pressure 1.4 bar Michael MONTEIL - 12 April 2010 63

ANSYS Study - Solutions #5

stresses and deflection - C-C+Be under D P = 1.4atm Smooth and continuous temperature distribution • • Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature Michael MONTEIL - 12 April 2010 64

Be (flatter on C-C) - Pressure load – Deformation Michael MONTEIL - 12 April 2010 65

Be (flatter on C-C) - Pressure load – Von-Mises Michael MONTEIL - 12 April 2010 66

T (°C)

Thermal load

ANSYS input = FLUKA output

• C-C + Be | 1 s = 0.5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field T (°C) Depth C-C Z (cm) Radial C-C Z (cm) Michael MONTEIL - 12 April 2010 Radial Be Z (cm) 67

Be (flatter on C-C) - Pressure + Thermal load – Deflection 5.4 um x 2.6e+002 Michael MONTEIL - 12 April 2010 68

Be (flatter on C-C) - Pressure + Thermal load – Von-Mises Michael MONTEIL - 12 April 2010 69

Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength x 2.6e+002 Michael MONTEIL - 12 April 2010 70

To do :

• Rough mechanical design – Solution #1 C-C with differential pumping • Maybe coating • 15 cm length between upstream and downstream sides – Solution #5 C-C + Be • Order quotes of Be • Same design that window in TI8, TI2, TT41 (Design by Kurt Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing the Ti foil by a Be foil • Nickel-coating to prevent oxidation on Be ?

• 15 cm length between upstream and downstream sides Michael MONTEIL - 12 April 2010 71