Transcript HiRadMat-Window-v3.0
HiRadMat Window Design report
v3.0
Michael MONTEIL - 12 April 2010 1
Specifications v3.0
• Interface between machine vacuum and Atmospheric pressure 10 -8 mbar / P atm Protective atmosphere !!!
• Aperture min 60 mm • Resist to a proton beam size on the window : 1 s = 0.5 mm
“Beam Size at the TT66 Vacuum Window”, C. Hessler, 26.02.2010
Michael MONTEIL - 12 April 2010 2
Solution
#5
: Be + C-C
• Same as solution #4 but the pressure load is supported by a C-C plate ⁺ Simple window assembly ⁺ Thin thickness (no differential pumping…) ⁺ Be cannot pollute vacuum chamber unless C-C fail ⁺ Tight ⁻ Price of Be but no pumps Michael MONTEIL - 12 April 2010 3
Solutions - Sum-up
• • • • • #1: C-C
(Differential pumping)
– Protective atm (Nitrogen ?) – Radiations?
#2: C-C + Graphite foil (useless now) #3: Tight steel “ring” with a C-C plate #4: Beryllium – Safety problem #5: C-C + Beryllium Today Michael MONTEIL - 12 April 2010 4
Different grades of Be
Michael MONTEIL - 12 April 2010 Data: Brush Wellman 5
Different grades of Be
• PF-60 ?
– Low rate of Beryllium oxide compare to PS-200 – Good quality-price ratio (Next slides…) • 1.5 to 2 time cheaper than IF-1 – Almost the same temperature distribution as pure Be and IF-1 (IF-1 a bit better…) – Used in CNGS… Collaboration: J. Blanco Michael MONTEIL - 12 April 2010 6
Design
• Specification – Be & C-C – Aperture min. 60mm – DN80 or DN60 conical flange connection – 15 cm depth maximum • Remark – Cannot machine Be at CERN Michael MONTEIL - 12 April 2010 7
Design
• Common design – Choices – Standard flanges only (cheaper) – Be window assembled in lab between 2 flanges (safety) – Conical flange (faster assembly once in experimental area) Design Conical Flange (plug-in flange) Tube (connection conical flange <--> conflat flange) 2 x Conflat (Window in-between) Michael MONTEIL - 12 April 2010 8
CNGS
“CNGS” like
HiRadMat – Option 1
Nota: Those drawing are drafts. Above dimensions are not representative of the reality Michael MONTEIL - 12 April 2010 9
“CNGS” like
Michael MONTEIL - 12 April 2010 Data: Brush Wellman 10
“CNGS” like
Michael MONTEIL - 12 April 2010 Data: Brush Wellman 11
“TED @ TI2, TT40” – Beryllium version
“TED @ TI2, TT40” HiRadMat – Option 2
Michael MONTEIL - 12 April 2010 12
“TED @ TI2, TT40” – Beryllium version
• Quote from BW Michael MONTEIL - 12 April 2010 13
2 design proposals
Option 1
+ Life warranty on Be + flange assembly + Easy to assembly + Standard conflat assembly + Tightness OK - Not that much
Option 2
+ Not that much - Precautions for the assembly - Non Standard conflat assembly (Tightness) - Might be careful to not cut (shear cut) the Be foil during assembly Nota: Those drawing are drafts. Above dimensions are not representative of the reality Michael MONTEIL - 12 April 2010 14
2 design proposals Cost estimation Be Foil
Option 1
• Number of flange to order : 2 – – Spare : 1 Window installed : 1 •
Option 2
Number of foil to order : 3 – – – Spare : 1 Window installed : 1 “In case we break a foil while assembling” : 1 Nota: Those drawing are drafts. Above dimensions are not representative of the reality Michael MONTEIL - 12 April 2010 15
2 design proposals Cost estimation Be Foil
Option 1 Flange
Foil Quantity Flange Grade 0.254 mm 0.254 mm 0.381 mm 1
2552 3266
2552 3266
2
5104
2552
6532
3266
6384 7656 9798
IF-1 3
2128 2552 3266
8228 10208 13064
4
2057 2552 3266
10220 12760 16330
5
2044 2552 3266
Foil Grade Quantity Flange 0.254 mm 0.254 mm 0.381 mm 1
1944 1903
1944 1903
2
3888 3806
1944 1903
3192 5832 5709
PF-60 3
1064 1944 1903
3968
4
7776 7612
992 1944 1903
4895
5
9720 9515
979 1944 1903
Option 2 Foil
Foil Quantity 0.254 mm Flange Grade 0.254 mm
1890
1
1890
3780
2
1890
PS-200 3
5670 -
1890
7560
4
-
1890
9450
5
-
1890
0.381 mm
1866
1866
3732
1866
5598
1866
7464
1866
9330
1866
Nota: Those drawing are drafts. Above dimensions are not representative of the reality Michael MONTEIL - 12 April 2010 16
About thickness, how does BW design their own Be foils?
Data: Brush Wellman With (Thickness 0.25mm, radius 35mm, pressure 1.01 kPa, E 303Gpa, Poisson 0.08) Results – s edge = 305MPa > 275 Mpa !!
– s center = 297Mpa > 275 Mpa !!
Michael MONTEIL - 12 April 2010 17
However…
• BW : “With
confirm that your calculations with reference to the DB450277 assembly are correct and show over the recommended values, however, the assembly was designed using empirical data as well taking into consideration the calculated values. We have performed tests on this design and found it to be reliable, with units sold to customers over the years performing
well under real-life conditions.” • Explanation – Because of plasticity effects, Be foil withstands 1 Atm (according to BW tests) even if Roark’s calculation says that it doesn’t withstand Michael MONTEIL - 12 April 2010 Data: Brush Wellman 18
To know
• • Be have ultra high resistance to fatigue cracking High endurance strength level Michael MONTEIL - 12 April 2010 Data: Brush Wellman 19
Solutions #5
stresses and deflection - C-C+Be under D P = 1 atm • • • • Linear circular fixed support 2 planes of symmetry Geometry – Diameter f 80 mm – – Thickness: 0.254 mm Aperture: f 60 mm Pressure 1 atm Michael MONTEIL - 12 April 2010 20
ANSYS Study - Solutions #5
stresses and deflection - C-C+Be under D P = 1 atm • Beryllium foil study – Smooth and continuous temperature distribution – Through-thickness energy deposition – Coefficient of Thermal Expansion varying with temperature – Be (pure elasticity): • Poisson’s ratio = 0.08
• High R e = 303 Mpa Michael MONTEIL - 12 April 2010 21
Michael MONTEIL - 12 April 2010 22
Michael MONTEIL - 12 April 2010 23
Michael MONTEIL - 12 April 2010 24
Michael MONTEIL - 12 April 2010 25
Michael MONTEIL - 12 April 2010 26
Michael MONTEIL - 12 April 2010 27
Michael MONTEIL - 12 April 2010 28
Michael MONTEIL - 12 April 2010 29
Michael MONTEIL - 12 April 2010 30
Michael MONTEIL - 12 April 2010 31
Michael MONTEIL - 12 April 2010 32
Conclusion: influence of gap reducing
• So if we flatter the foil on the C-C, we reduce the Max stress (as shows ANSYS calculation with non plasticity model), maybe also stay in elastic domain (Bellow 275Mpa at room Temp).
We will manage to reduce this gap (flattering the Be foil as much as possible on C-C plate) Michael MONTEIL - 12 April 2010 33
Easiness to reduce Gap C-C / Be
Option 1 Option 2
Michael MONTEIL - 12 April 2010 34
To do :
• • • Order Beryllium – Delivery: 4 Weeks ARO for flanges (Option 1) – Delivery: 6 Weeks ARO fro foil (Option 2) Assembly Test Michael MONTEIL - 12 April 2010 35
Michael MONTEIL - 12 April 2010 36
V2.0 slides
Michael MONTEIL - 12 April 2010 37
Window geometry – C-C option
• Carbon/Carbon composite: 1501 G from SGL • Cylindrical window • Diameter – f Aperture f 80 mm 60 mm • • Thickness: 0.5 cm Aperture (
flange internal diameter
): f 60 mm Michael MONTEIL - 12 April 2010 38
•
Solutions #1 for C-C tightness problem: Differential vacuum (V2.0)
1 Window C-C – Pumping speed needed: 2.3
x 10 8 l/s … • 2 Windows C-C with differential pumping – Pumping speed needed: 8.94
x 10 2 l/s OK !
• 3 Windows C-C with differential pumping – Pumping speed needed: 13 l/s Too low ?!
Michael MONTEIL - 12 April 2010 39
Solutions #1
• What about radiations in this area ?
– Possible maintenance needed on the roots pump… • Protective atmosphere • Decreasing pressure in Vacuum side with serial pumps Michael MONTEIL - 12 April 2010 40
C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 0.5
2.83E+00 1.00E+03 P 2 3.16E-03 Window 2 6 5.00E-02 2.83E+01 0.5
8.94E-06 3.16E-03 P 3 1.00E-08 2.83E+00 8.94E+02
3218.8
8.94E-06 894.1101
3218.8
Reference
C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 0.5
2.83E+00 1.00E+03 P 2 1.00E-02 Window 2 6 5.00E-02 2.83E+01 0.5
2.83E-05 1.00E-02 P 3 1.00E-07 2.83E+00 2.83E+02
1017.9
2.83E-05 282.7405
1017.9
C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 0.5
2.83E+00 1.00E+03 P 2 3.16E-02 Window 2 6 5.00E-02 2.83E+01 0.5
8.94E-05 3.16E-02 P 3 1.00E-06 2.83E+00 8.94E+01
321.87
8.94E-05 89.40847
321.87
• C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 0.5
2.83E+00 1.00E+03 2.83E+00 P 2 5.00E-03 Window 2 6 5.00E-02 2.83E+01 0.5
1.41E-05 5.00E-03 P 3 1.00E-08 5.65E+02
2035.7
1.41E-05 1413.714
5089.4
C-C P D cm K cm 2 /s A cm 2 L cm Q mbar*cm 3 /s D P mbar Q mbar*cm 3 /s S l/s m 3 /h P 1 (ATM) Window 1 1.00E+03 6 5.00E-02 2.83E+01 1 1.41E+00 1.00E+03 1.41E+00 P 2 3.16E-03 Window 2 6 5.00E-02 2.83E+01 1 4.47E-06 3.16E-03 P 3 1.00E-08 4.47E+02
1609.4
4.47E-06 447.0551
1609.4
P2 : Roots pump • 100 –> 1500 m 3 /h • 10 -3 -> 10 Bar • P3 : Ion pump • 400 l/s Michael MONTEIL - 12 April 2010 41
Solutions #2 for C-C tightness problem: Add a Graphite foil (v1.0) Solution #3 : Tight steel“ring” with a C-C plate (v1.0) Solution #4 : Beryllium Michael MONTEIL - 12 April 2010 42
Michael MONTEIL - 12 April 2010 43
ANSYS Study - Solutions #1
stresses and deflection - C-C under D P = 1.4atm • • • • Linear circular fixed support 2 planes of symmetry Geometry – Diameter f 80 mm – – Thickness: 5 mm Aperture: f 60 mm Pressure 1.4 bar Michael MONTEIL - 12 April 2010 44
ANSYS Study - Solutions #1
stresses and deflection - C-C under D P = 1.4atm • • Orthotropic properties : 18 plies [0°/90°…] Smooth and continuous temperature distribution • • Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature and directions Michael MONTEIL - 12 April 2010 45
C-C - Pressure load - Deflection
7.4 μm Michael MONTEIL - 12 April 2010 46
C-C - Pressure load – Von-Mises
5.9 Mpa Michael MONTEIL - 12 April 2010 47
C-C - Pressure load – Tsaï-Wu
Michael MONTEIL - 12 April 2010 48
T (°C) •
C-C - Thermal load
ANSYS input = FLUKA output
C-C | 1 s = 0.5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field T (°C) Radial R (cm) Michael MONTEIL - 12 April 2010 Depth Z (cm) 49
C-C - Pressure + Thermal load – Deflection
10.6 μm Michael MONTEIL - 12 April 2010 50
C-C - Pressure + Thermal load – Von-Mises
31 Mpa Michael MONTEIL - 12 April 2010 51
C-C - Pressure + Thermal load – Tsaï Wu
Michael MONTEIL - 12 April 2010 52
Michael MONTEIL - 12 April 2010 53
ANSYS Study - Solutions #4
stresses and deflection - Be under D P = 1.4atm • • • • Linear circular fixed support 2 planes of symmetry Geometry – Diameter f 80 mm – – Thickness: 0.254 mm Aperture: f 60 mm Pressure 1.4 bar Michael MONTEIL - 12 April 2010 54
ANSYS Study - Solutions #4
stresses and deflection - Be under D P = 1.4atm • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature • Be: – Poisson’s ratio = 0.1
– – High R e High R m = 275 Mpa = 551 MPa Michael MONTEIL - 12 April 2010 55
Be - Pressure load - Deflection
0.81 mm Michael MONTEIL - 12 April 2010 56
Be - Pressure load – Von-Mises
319 Mpa Michael MONTEIL - 12 April 2010 57
Be - Pressure load – Safety factor Ult. Strength 1.7
Michael MONTEIL - 12 April 2010 58
Be - Thermal load
ANSYS input = FLUKA output
Be | 1 s = 0. 5 mm | 1.7e11 p+ | 288 bunches • T (°C) Axisymmetrical radial temperature field T (°C) Z (cm) Radial Be Michael MONTEIL - 12 April 2010 Z (cm) 59
Be - Pressure + Thermal load – Deflection
0.8
mm Michael MONTEIL - 12 April 2010 60
Be - Pressure + Thermal load – Von-Mises
315 Mpa Michael MONTEIL - 12 April 2010 61
Be - Pressure + Thermal load – Safety factor Ult. Strength 1.7
Michael MONTEIL - 12 April 2010 62
•
ANSYS Study - Solutions #5
stresses and deflection - C-C+Be under D P = 1.4atm 2 Studies – C-C (See Solution #4) • Pressure load • Pressure + Temperature loads – Be (Following slides) • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side + Temperature load • • • 2 planes of symmetry Geometry – Diameter – – f 80 mm Thickness • C-C: 5 mm • Be: 0.254 mm Aperture: f 60 mm Pressure 1.4 bar Michael MONTEIL - 12 April 2010 63
•
ANSYS Study - Solutions #5
stresses and deflection - C-C+Be under D P = 1.4atm Smooth and continuous temperature distribution • • Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature Michael MONTEIL - 12 April 2010 64
Be (flatter on C-C) - Pressure load – Deformation Michael MONTEIL - 12 April 2010 65
Be (flatter on C-C) - Pressure load – Von-Mises Michael MONTEIL - 12 April 2010 66
T (°C)
Thermal load
ANSYS input = FLUKA output
• C-C + Be | 1 s = 0.5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field T (°C) Depth C-C Z (cm) Radial C-C Z (cm) Michael MONTEIL - 12 April 2010 Radial Be Z (cm) 67
Be (flatter on C-C) - Pressure + Thermal load – Deflection 5.4 um x 2.6e+002 Michael MONTEIL - 12 April 2010 68
Be (flatter on C-C) - Pressure + Thermal load – Von-Mises Michael MONTEIL - 12 April 2010 69
Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength x 2.6e+002 Michael MONTEIL - 12 April 2010 70
To do :
• Rough mechanical design – Solution #1 C-C with differential pumping • Maybe coating • 15 cm length between upstream and downstream sides – Solution #5 C-C + Be • Order quotes of Be • Same design that window in TI8, TI2, TT41 (Design by Kurt Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing the Ti foil by a Be foil • Nickel-coating to prevent oxidation on Be ?
• 15 cm length between upstream and downstream sides Michael MONTEIL - 12 April 2010 71