3_4ea vizellatas_2m - Vízellátási és Környezetmérnöki Intézet

Download Report

Transcript 3_4ea vizellatas_2m - Vízellátási és Környezetmérnöki Intézet

EJF Építőmérnöki Szak (BSC) Vízellátás

3. 4.előadás

Vízemelés, víztárolás

Dittrich Ernő

egyetemi adjunktus PTE PMMK Környezetmérnöki Tanszék Pécs, Boszorkány u. 2. B ép. 003. [email protected]

1

Szivattyúk kiválasztásának szempontjai I. (általánosságban)

       Felhasználási terület (pl. öntözés, szennyvíz átemelés, vízellátás, ipari nyomásfokozás, stb..) Szállítandó anyag jellemzői (fajta, pH, szennyezettség, sűrűség, viszkozitás, stb..) Teljesítmény adatok (szállító képesség, nyomás, emelőmagasság, teljesítmény, jelleggörbe alak, hatásfok, szívóképesség, fordulatszám, energia hatékonyság, stb..) Működési elv és szerkezeti felépítés (dugattyús-, csiga-, örvény-, aprító, stb..) Járókerék anyaga és szerkezeti anyagok (műanyag, öv, acél, KO-acél, bronz, stb..) Forgalmazó Garanciák 2

Szivattyúk teljesítmény adatai

     

Q

: szállítási vízhozam (m 3 /s, l/s, l/min, l/h)

H

: emelő magasság, szállító magasság (m)

p

: nyomás (Pa, bar)

H s

: szívómagasság (m)

M

: hajtónyomaték (Nm)

P

: hajtó teljesítmény (LE, kW)  

n

: fordulatszám (1/min) η: hatásfok (%)  

P hasznos P bevezetett

 100

Egy szivattyút ezen adatok értéktartományai együttesen jellemeznek. Kiragadott munkapontok csak hozzávetőleges tájékozódásra alkalmasak!

3

Meredek vagy lapos jelleggörbe

    Q H diagram felülről domború görbe Ha a kezdeti szakasz emelkedik: labilis ág Meredek jelleggörbe: ingadozó emelőmagasságnál és „vízszállítás-tartó” Lapos jelleggörbe: ingadozó vízfogyasztásnál is „nyomástartó”.

H

Q

H

Q

 1 

lapos

 1 

meredek

4

  

Q H görbe kapcsolata más teljesítmény jellemzőkkel

Q-H s diagram

: általában felülről domború maximummal rendelkező görbe

Q-P diagram

: nagynyomású szivattyúk esetén általában végig emelkedő, míg nagy vízszállítású szivattyúk esetén általában végig csökkenő görbe

Q η diagram

: maximumos, felülről domború görbe. Q névl található.

és H névl η max nál 5

n-Q-H η kagyló-diagram

n-Q-H η kagyló-diagram

: Q H görbék ábrázolása n függvényében, kiegészítve azonos hatásfokú munkapontok izo vonalas görbéivel 6

  

Szivattyú választás menete I.

1. lépés:

Feladat vázlat készítése:  Összes mértékadó üzemállapot meghatározása  Üzemállapotokra jellemző Q-H munkapontok megadása

2. lépés:

Külső teljesítmény adatok meghatározása:  vezetéki jelleggörbék meghatározása  leszívási és duzzasztási szintek megadása

3. lépés

: Szóba jöhető szivattyúk jelleggörbéinek „hozzápróbálása” a vezetéki jelleggörbékhez     Csővezetéki jelleggörbe csak egyszer metszheti a szivattyú jelleggörbéjét!

Csővezetéki jelleggörbe és labilis ág metszését lehetőleg kerülni kell!

Párhuzamosan kapcsolt szivattyúk vízszállítása összegződik Többlépcsős szivattyúk emelőmagassága összegződik 7

  

Szivattyú választás menete II.

4. lépés:

A megengedett szívómagasság összevetése az üzemállapotokhoz rendelt szívómagassággal    Hagyományos szívóüzemet lehetőleg kerülni kell (lábszelep)! Ráfolyásos üzemnél minimális ráfolyás járókerék teteje + 50 cm Szívómagasság = geodetikus szívómagasság + szívócső és szerelvényeinek teljes ellenállása + belépési veszteség!!!

5. lépés:

Hajtó teljesítmény igény meghatározása (katalógusadat hiányában az alábbi közelítő képlet használható):

P

Q

   

g

H

6. lépés:

A választott szivattyú minden adatának ellenőrzése a szélsőséges üzemállapotokban:  Pl. szállítómagasság vagy vízigény változás, alvízszint ingadozás, indítás átmeneti jelenségei, fordulatszám változás, folytásos üzem, stb...) 8

Szivattyú és vezetéki jelleggörbe illesztése

9

Vízellátásban használt szivattyúk csoportosítása

 

Feladatuk szerint:

    Vízszerzés szivattyúi (külön tantárgy) Vízkezelés során alkalmazott szivattyúk (külön tantárgy) Hálózati szivattyú telepek  Magas tározóra dolgoznak  Hidroforral vagy tágulási tartállyal működnek együtt  Frekvencia váltós vezérléssel, fordulatszám szabályozottan működnek Hálózatba iktatott nyomásfokozó berendezések

Szívótérhez viszonyított helyzet szerint:

   Szívótérbe helyezett szivattyúk (főleg vízszerzésénél) Száraz beépítésű szivattyúk ráfolyással Száraz beépítésű szivattyúk, szívó üzemmel (szívóüzem mindig problémás!) 10

Hálózati szivattyú telepek kiválasztásának szempontjai

        Vízigény időbeli alakulása Tartalék szivattyúk aránya  Minimum 30% beépített tartalék kiépítése javasolt  1 működő szivattyú esetén +1 db beépített tartalék szükséges (100%) Tározás – szivattyúzás – hálózat szerves egysége Szívótér minimális térfogata Hálózati tározó térfogata és magassága Egy ütemű vagy több ütemű kiépítés Különböző emelő magasságú szivattyúk alkalmazása szükséges-e? Szélső üzemállapotok!

Lehető legegyszerűbb üzemvitel 11

Emelési magasság, vezetéki jelleggörbe

H

h geod

h cs

i n

  1

h i

P sz

  

P ny g

      , h st : statikus emelési magasság (m) h cs : csősúrlódási veszteség (m) h i : i dik idom v. szerelvény helyi vesztesége (m) P sz : szívóoldali vízszintre ható nyomás (Pa) P ny : nyomóoldali vízszintre ható nyomás (Pa) (pl: hidofor!!!)

P sz

  

g P ny

 0 ha a szívó oldali és a nyomóoldali vízszintre is légköri nyomás hat 

Vezetéki jelleggörbe

: H=f(Q) 12

13

   

Szivattyúk soros üzeme

Ha nem áll rendelkezésre elegendő emelőmagasságú szivattyú.

Soros üzemre csak azonos vízszállítású szivattyúk kapcsolhatóak!

Eredő Q-H görbét az összetartozó ordináta (emelőmagasság) értékek összegzésével nyerhetjük.

A munkapont ismeretében a sorba kapcsolt szivattyúk teljesítmény felvétele és hatásfoka meghatározható.

P

1 

Q

    1

g

H

1

P

2 

Q

    2

g

H

2 14

     

Szivattyúk párhuzamos üzeme I.

Ha egy szivattyú maximális vízhozama nem éri el a csúcs vízigényt, vagy jelentősen ingadozik a vízigény, vagy növelni akarjuk az üzembiztonságot.

Párhuzamos üzemre közel azonos vízhozamú szivattyúkat célszerű kapcsolni!

Szívóvezeték lehet közös vagy önálló. A nyomóvezeték közösített.

Együttdolgozó szivattyúk eredő Q-H görbéje az összetartozó abcissza (vízhozam) értékek összegzésével nyerhető.

A vezetéki jelleggörbe metszéspontjaiból meghatározható az együttdolgozó szivattyúk és az önállóan működő szivattyú munkapontja is. A vízhozam növekedésével a csővezetéki ellenállás négyzetesen nő. Így a Q 1 H.

15

Szivattyúk párhuzamos üzeme II.

  Minden szivattyú ki-, bekapcsolása esetén a működésben lévő szivattyúk munkapontja változik. Ennek következménye a szivattyú hatásfok változása. A szivattyúk darabszámának növelése csak hatásfok romlással oldható meg!

A kritikus szivattyúszám növelése után a szivattyútelep össz. Vízhozama nem növelhető!

16

    

Szivattyúk párhuzamos üzeme III.

Meredek jelleggörbéjű szivattyúk párhuzamos kapcsolása:  Jelentős mértékű vízhozam emelkedés Lapos jelleggörbéjű szivattyúk párhuzamos kapcsolása:  Kisebb mértékű vízhozam emelkedés Szivattyú választásnál a fő cél, hogy minden üzemállapotban a párhuzamosan kapcsolt gépek a lehető legközelebb működjenek a névleges munkaponthoz! Lépcsős szivattyú üzemnél a legnagyobb üzemidejű betáplálási vízhozamhoz tartozó munkapont legyen a legközelebb a névleges munkaponthoz! Ez csak azonos áramdíj mellett igaz. Változó áramdíj (pl. éjszakai áram) esetén gazdasági számítás szükséges az optimalizáláshoz!!!

A párhuzamos kapcsolásnál a lehető legkisebb gépszámra és a lehető legalacsonyabb szabályozási veszteségre kell törekedni!

17

2*2 es párhuzamosan kapcsolt szivattyútelep (példa)

18

Szivattyúk szabályozási módjai

      

Fojtásos szabályozás Megkerülő vezetékes szabályozás Szabályozás lapátállítással Fordulatszám szabályozás Szabályozás tározásal (lásd átfolyásos rendszerű magastározó) Lépcsős szabályozás (lásd szivattyúk párhuzamos kapcsolása) Üzemidő szabályozás

19

Fojtásos szabályozás

20

Megkerülő vezetékes szabályozás

21

Szabályozás lapátállítással

22

Fordulatszám szabályozás

Q

1

Q

2 

n n

2 1

h

1

h

2    

n n

2 1    2

P

1

P

2    

n n

2 1    3 23

 

1. feladat

Határozza meg az ismert munkapontú szivattyú főbb teljesítmény adatait ha a szivattyú fordulatszámát 20%-al növeljük. Kiindulási adatok:  Kiindulási munkapont adatai:    Fordulatszám: n 1 =960 1/min Vízhozam: Q 1 =10 l/s Emelő magasság: H 1 =9,2 m Számítandó a szivattyú kezdeti teljesítménye, továbbá a fordulatszám növelés utáni üzemi adatok ha a szivattyú össz. hatásfoka η ö =73%:  Teljesítmény   Vízhozam Emelőmagasság 24

1. feladat I.

25

Kavitáció I.

A telített gőz nyomásának értéke a hőmérséklet függvényében: (1 kp=10 N)

Kavitáció:

gőzbuborék keletkezése és megszűnése az áramló folyadékban.

Kavitáció hatásmechanizmusa:

Telített gőz nyomásánál kisebb nyomású hely kialakulása az áramlási térben Gőzbuborékok keletkezése Magasnyomású, nagyfrekvenciájú , pontszerű ütések érik a falat Kavitációs erózió: szivacsossá váló fémszerkezet, nagyobb darabok leszakadása Nagyobb nyomású térben érve a gőzbuborékok összeroppannak 26

Kavitáció II.

 

Tünetek:

  Csattogó, pattogó hang üzem közben Fokozott géprezgés

Hatások:

  Csökkenő vízszállítás Csökkenő élettartam 27

Szívó magasság, NPSH

Belső nyomásesés (NPSH):

NPSH

p s

,

krit

  

g p g

v s

2 2

g

Ahol: p s,krit : kritikus szívócsonkbeli nyomás p g : telített gőz nyomása v s : szívócsonkbeli sebesség

Kritikus szívómagasság:

H sg

, max  

p

I g

p S

  ,

krit g

v s

2 2

g

h sz

p I

  

g p g

NPSH

h sz

Ahol: p I : nyomás az alvíz szinten h sz : a szívócső áramlási ellenállása 28

2. feladat I.

Az ábrán látható szívó vezetékben Q=60 l/s vízhozamot kell szállítani. A ábrán látható alapadatok ismeretében (k=1 mm): Mennyi a szivattyú szívócsonkjában kialakuló abszolút nyomás, ha a szívókosár és a lábszelep együttes veszteség tényezője 5?

Ebben az üzemállapotban kialakulhat e kavitációs üzem, ha a szivattyú NPSH értéke 2 m?

29

2. feladat II.

 90  

f

Re  

ív

 0 , 8  0 , 39  0 , 31

f

Re és 

ív

a 2.

feladat IV.

diáról!

  0 , 031 a Nikuradse diagramról leolvasva!

P

2 

P

1 

H

  

g

v

2 2 2    

hv

P

1 

H

  

g

v

2 2   2   1   90   

lsz

  

l d

 

P

2  10 5  5 , 0  10 3  9 , 81  1 , 91 2 2  10 3   1  0 , 31  5 , 0  0 , 031  5 , 0 0 , 2    3 , 8  10 4  0 , 38

bar

30

2. feladat III.

Ív ellenállása: Kritikus nyomás a szívócsonkban:

NPSH

p s

,

krit

  

g p g

v s

2 2

g p s

,

krit

NPSH

  

g

v s

2   2 

p g

31

2. feladat IV.

p s

,

krit

NPSH

  

g

v s

2   2 

p g

T  20 o C 

p g

kp

253

m

2  2530

Pa

( Kavitáció I.

diáról leolvasva

p s

,

krit

 2 , 0  10 3  9 , 81  1 , 91 2 2  10 3  2530  16135

Pa

 1 , 6  10 4 )

P

2 

3 , 8

10

4 

P krit

1 , 6

10

4

Tehát a szivattyú nem kavitál!

32

  

Víztárolók csoportosítása és feladatai

Víztárolók funkciói lehetnek:  Vízfogyasztás ingadozásból eredő többlet vízigény tárolása     Vízfogyasztás ingadozásából eredő vízhiány pótlása Tűzi-víz biztosítása Üzemzavarok idején történő vízellátás biztosítása (csőtörés, géphiba, stb..) Energiaköltség - takarékosság (éjszakai áram)  Stb..

Mély tárolók:  Általában a tisztavíz medence és a tűzi-víz tározók többsége mélytározó  Csak mennyiségi kiegyenlítésre (és) vagy egyéb speciális célra szolgál Magas tárolók:  Mennyiségi és nyomás kiegyenlítésre is szolgálnak 33

   

Magas tárolók elhelyezése I.

Súlyponti tároló

 A legkedvezőbb nyomásviszonyok

Ellennyomó tároló

 Kétfelől táplált fogyasztási terület – legnagyobb üzembiztonság  Nagyobb medence magasság

Átfolyó tároló

  A fogyasztók csak a medencéből kapnak vizet Egyszerűbb üzemmenet

Oldal tároló

 Általában domborzati igény miatt az ellátandó körzet oldalsó felén kerül elhelyezésre a tároló 34

Magas tárolók elhelyezése II.

35

Magas tárolók elhelyezése III.

36

Tárolók magassági elhelyezésének elvi kérdései

37

   

Víztárolók térfogatának méretezése I.

A víztároló térfogatát úgy kell meghatározni, hogy egyidejűleg az összes vízszolgáltatási célt el tudja látni!

Tároló térfogat

átfolyó rendszerű települési tároló esetében:     

V t

V k

V tű

V cs

V te

V t

: tároló teljes térfogata

V k

: a vízfogyasztás kiegyenlítéséhez szükséges térfogat

V tű

: tűzoltási víztérfogat (legalább T tű =3 óra időtartamra!)

V cs

: csőtörés kijavításának idejére biztosítandó víztérfogat (T cs =8-10 óra)

V te

: vízkezelés technológiai (pl. szűrő visszamosatás) vízigénye (csak tisztavíz medencénél!)

Tűzoltási víztérfogat:

ahol:

V tű

Q tű

Q tű : a mértékadó oltóvíz igény

Csőtörési víztérfogat:

V cs

Q h

T

T cs tű

38

Víztárolók térfogatának méretezése II.

    Nem átfolyó rendszerű tárolónál a teljes térfogat az átfolyó rendszerű tárolóénál kisebb!

Ha több tároló van egy rendszerben akkor

V tű V cs

többlet térfogatok mindig az olcsóbb tározótípusnál alakítandó ki.

és Víztoronynál törekendi kell arra hogy lehetőleg csak

V k

térfogatot legyen szükséges kielégítenie! Víztoronynál törekendi kell az előre gyártott víztornyok méretválasztékához történő tározó térfogat illesztésre. Előre gyártott víztornyok térfogatválasztékát lásd. Török L. segédletében.

39

Víztárolók térfogatának méretezése III.

    

Teljes üzemű tároló

tároló) : a csúcsfogyasztás idején a vízigény teljes egészét a tároló adja (átfolyásos

Részleges üzemű tároló:

a csúcsfogyasztás egy részét a szivattyú táplálja a hálózatba

147/2010. (XII. 23.) Korm. rend.

alapján a település közműves vízellátásának létesítése során a napi csúcsfogyasztás legalább 30%-ának megfelelő tárolóteret kell biztosítani!

A tároló legkisebb térfogatát

V k

és a

147/2010. (XII. 23.) Korm. rend

. kikötése közül a nagyobbik adja!

Maximális tározó térfogat Q d,max 80-100 %-a 40

Víztárolók térfogatának méretezése IV.

    A tároló

V

időszakra!

k

térfogatának meghatározásához pontosan ismerni kell a betáplálás és a fogyasztás időbeni alakulását a kiegyenlítési A tárolóban lévő víztérfogat a betáplálás és a fogyasztás különbségéből fakadóan folyamatosan változik: 

Mélytároló

(tisztavíz medence) esetében a tárolóban lévő pillanatnyi víztérfogatot a kezeltvíz betáplálás, és a hálózati szivattyúzás különbsége szabja meg 

Magastároló

esetében a tárolóban lévő pillanatnyi víztérfogatot a hálózati szivattyúzás és a hálózati vízfogyasztás különbsége szabja meg. A tárolókat kiegyenlítési időszakra méretezzük (általában 1 nap, esetleg 1 hét).

A tározó

V k

térfogata az ún. vízbetáplálási és vízfogyasztási integrálgörbék segítségével lehet számítani .

41

  

Víztárolók térfogatának méretezése V.

V k

tározótérfogat meghatározása grafikusan

Q sz

: szivattyúzás vízhozama

Q f

: vízfogyasztás vízhozama

V f V sz

t t

   24 0

Q f

dt

t t

   24 0

Q sz

dt V k

V

1 

V

2 42

43

3. feladat I.

Számítsa ki a mélytározó, a magastározó térfogatát valamint a névleges szivattyúzási vízhozamot, az alábbiak ismeretében:     A napi maximális kommunális és ipari vízigény: 2288 m3/nap.

A vízfogyasztás idősorát az alábbi táblázat mutatja A vízkezelő rendszer 22 h/nap időtartamban termel. Napi 2 óra a szűrők visszamosatására szánt idő. A visszamosatási vízigény a maximális napi vízigény 5%-a.

Egy tűzeset vízigénye 15 l/s 2 órán keresztül. A település mértékadó oltóvíz igénye 30 l/s 3 órán keresztül.

44

3. feladat II.

 A kommunális és ipari vízigény együttes idősora

Időköz

0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 -23 23 - 24

Összesen Átlag Q f (m 3 /h)

4.2

Q f

6.3

20.9

39.7

(%)

0.18

0.28

0.91

1.74

84.8

145.6

199.8

189.4

116.2

57.7

22.0

10.5

2288.0

95.3

73.1

146.3

220.7

210.2

153.8

95.3

76.6

84.8

95.3

91.1

69.3

74.4

3.71

6.36

8.73

8.28

5.08

2.52

0.96

0.46

100.0

4.2

3.19

6.39

9.65

9.19

6.72

4.17

3.35

3.71

4.17

3.98

3.03

3.25

45

Időköz

0 - 1 1 - 2

3. feladat III.

2 - 3 3 - 4 4 - 5 A víztermelés szükséges vízhozama:

Q vt

Q d

, max 22  1 , 05  2288  1 , 05 22  109 , 2

m

3

h

 A víztermelés és a vízfogyasztás együttes alakulása: 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 -23 23 - 24

Összesen Átlag

Qdmax

Q f (m 3 /h) Q f (%) ∑Qf (%) Q vt (m 3 /h) Q vt (%) ∑Qvt (%)

4.2

0.18

0.18

109.2

4.77

4.77

6.3

20.9

0.28

0.91

0.46

1.37

109.2

109.2

4.77

4.77

9.55

14.32

39.7

73.1

146.3

220.7

1.74

3.19

6.39

9.65

3.11

6.30

12.70

22.34

109.2

109.2

109.2

109.2

4.77

4.77

4.77

4.77

19.09

23.86

28.64

33.41

210.2

153.8

95.3

76.6

84.8

95.3

91.1

69.3

74.4

84.8

145.6

199.8

189.4

116.2

57.7

22.0

9.19

6.72

4.17

3.35

3.71

4.17

3.98

3.03

3.25

3.71

6.36

8.73

8.28

5.08

2.52

0.96

31.53

38.25

42.42

45.76

49.47

53.64

57.62

60.65

63.90

67.60

73.97

82.70

90.98

96.06

98.58

99.54

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

0 4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

0.00

81.14

85.91

90.68

95.45

100.23

105.00

105.00

38.18

42.95

47.73

52.50

57.27

62.05

66.82

71.59

76.36

10.5

0.46

2288.0 100.0

95.3

4.2

100.00

2288

0

2402.4

100.1

0.00

105.0

4.4

105.00

46

   

3. feladat IV.

Szivattyúzási üzemrend:  2 műszak melletti folyamatos szivattyúzás    2 db azonos típusú párhuzamosan kapcsolt szivattyúból álló szivattyú telep (+1 db beépített tartalék) Csúcsvízfogyasztási időszakokban mindkét szivattyú üzemel (8 órás üzem), alacsonyabb fogyasztások idején csak 1 db szivattyú üzemel (16 órás üzem). Ez alapján kialakított üzemrend (kommunális és ipari csúcsfogyasztási üzemállapotban) :    A szivattyúk nem termelnek: 0 – 5 h és 21 – 24 h 1. szivattyú termel: 5 – 21 h 2. szivattyú termel: 5 – 9 h és 17 – 21 h Egyenértékű szivattyú óraszám: 24 h Szivattyúnkénti vízhozam igény: Q dmax /24=93,3 m 3 /h Szivattyúk párhuzamos kapcsolása csökkenti a szivattyúnkénti vízszállítást!!!! → A szivattyú választásnál a tározó számítás korrekciója szükséges!!!

47

Időköz

0 - 1

3. feladat

1 - 2 2 - 3

V.

3 - 4 4 - 5 Víz-teremlés, vízfogyasztás és szivattyúzás alakulása 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 -23 23 - 24

Összesen Átlag

Qdmax

Q f (m 3 /h)Q f (%) ∑Qf (%) Q vt (m 3 /h)Q vt (%) ∑Qvt (%)Q sz (m 3 /h)Q sz (%) ∑Qsz (%)

4.2 0.18

0.18

109.2

4.77

4.77

0 0.00

0.00

6.3 0.28

20.9 0.91

0.46

1.37

109.2

109.2

4.77

4.77

9.55

14.32

0 0 0.00

0.00

0.00

0.00

39.7 1.74

73.1 3.19

146.3 6.39

220.7 9.65

3.11

6.30

12.70

22.34

109.2

109.2

109.2

109.2

4.77

4.77

4.77

4.77

19.09

23.86

28.64

33.41

0 190.7

190.7

190.7

0.00

8.33

8.33

8.33

0.00

8.33

16.67

25.00

210.2 9.19

153.8 6.72

95.3 4.17

76.6 3.35

84.8 3.71

95.3 4.17

91.1 3.98

69.3 3.03

74.4 3.25

84.8 3.71

145.6 6.36

199.8 8.73

189.4 8.28

116.2 5.08

57.7 2.52

22.0 0.96

31.53

38.25

42.42

45.76

49.47

53.64

57.62

60.65

63.90

67.60

73.97

82.70

90.98

96.06

98.58

99.54

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

109.2

0 4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

4.77

38.18

42.95

47.73

52.50

57.27

62.05

66.82

71.59

76.36

81.14

85.91

90.68

95.45

4.77 100.23

4.77 105.00

0.00 105.00

190.7

95.3

95.3

95.3

95.3

95.3

95.3

95.3

95.3

190.7

190.7

190.7

190.7

0 0 57 8.33

4.17

4.17

4.17

4.17

4.17

4.17

4.17

4.17

8.33

8.33

8.33

75.00

83.33

91.67

8.33 100.00

0.00 100.00

0.00 100.00

2.50 102.50

33.34

37.50

41.67

45.83

50.00

54.17

58.33

62.50

66.66

10.5 0.46 100.00

2288.0 100.0

95.3

4.2

2288

0

100.1

0.00 105.00

2402.4 105.0

4.4

57 2.50 105.00

2402.0 105.0

48

100.1

4.4

3. feladat VI.

Időköz

0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7

Mélytározó térfogatának meghatározása

7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 -23 23 - 24

Összese n Q vt (m 3 /h) Q vt (%)

109.2 4.77

∑Qvt (%)

4.77

Q sz (m 3 /h)

109.2 4.77

109.2 4.77

9.55

14.32

109.2 4.77

109.2 4.77

109.2 4.77

109.2 4.77

19.09

23.86

28.64

33.41

Q sz (%)

0 0.00

0 0.00

0 0.00

0 0.00

190.7 8.33

190.7 8.33

190.7 8.33

∑Qsz (%)

0.00

Q sz -Q vt (%)

-4.77

∑(Q sz -Q vt ) (%)

-4.77

0.00

0.00

0.00

8.33

16.67

25.00

-4.77

-4.77

-4.77

3.56

3.56

3.56

-9.55

-14.32

-19.09

-15.53

-11.97

-8.40

109.2 4.77

109.2 4.77

109.2 4.77

109.2 4.77

109.2 4.77

109.2 4.77

109.2 4.77

109.2 4.77

38.18

42.95

47.73

52.50

57.27

62.05

66.82

71.59

190.7 8.33

95.3 4.17

95.3 4.17

95.3 4.17

95.3 4.17

95.3 4.17

95.3 4.17

95.3 4.17

33.34

37.50

41.67

45.83

50.00

54.17

58.33

62.50

3.56

-0.61

-0.61

-0.61

-0.61

-0.61

-0.61

-0.61

-4.84

-5.45

-6.06

-6.67

-7.27

-7.88

-8.49

-9.10

109.2 4.77

109.2 4.77

109.2 4.77

109.2 4.77

76.36

81.14

85.91

90.68

109.2 4.77

95.45

109.2 4.77 100.23

109.2 4.77 105.00

0 0.00 105.00

95.3 4.17

190.7 8.33

190.7 8.33

190.7 8.33

66.66

75.00

83.33

91.67

190.7 8.33 100.00

0 0.00 100.00

0 0.00 100.00

57 2.50 102.50

-0.61

3.56

3.56

3.56

3.56

-4.77

-4.77

2.50

-9.70

-6.14

-2.58

0.98

4.55

-0.23

-5.00

-2.50

0 0.00 105.00

57 2.50 105.00

2.50

0.00

2402.4 105.0

2402.0 105.0

max (+)

19.09

Átlag

Qdmax

100.1

2288 4.4

100.1

4.4

max (-) összesen (%) összesen (m3)

4.55

23.64

541 49

3. feladat VII.

Víztermelés és szivattyúzás alakulása

9,00 8,00 7,00

2 db szivattyú működik

6,00 5,00 4,00 3,00 2,00 1,00 0,00 Qvt (%) Qsz (%) 

Idő (h) Mélytározó térfogatának meghatározása grafikusan

V m

 4 .

55  19 .

09  23 , 64 % 100,00 80,00

Víztermelés és szivattyúzás integrálgörbéi 105% víztechn. vízigény többlet 1 db szivattyú működik Szűrők vissza mosatása

60,00 40,00 20,00 0,00

19.09% 4.55%

∑Qvt (%) ∑Qsz (%) 50

Idő (h)

3. feladat VIII.

Magastározó térfogatának meghatározása Időköz

0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 22 -23

Átlag

Qdmax

Q f (m 3 /h) Q f (%) ∑Qf (%) Q sz (m 3 /h)

4.2 0.18

0.18

6.3 0.28

20.9 0.91

39.7 1.74

0.46

1.37

3.11

73.1 3.19

6.30

146.3 6.39 12.70

220.7 9.65 22.34

210.2 9.19 31.53

153.8 6.72 38.25

95.3 4.17 42.42

190.7

190.7

190.7

190.7

95.3

95.3

0

Q sz (%) ∑Qsz (%)Q f -Q sz (%)

0.00

0.00

0.18

∑(Q f -Q sz ) (%)

0.18

0 0 0 0.00

0.00

0.00

0.00

0.00

0.00

0.28

0.91

1.74

0.46

1.37

3.11

8.33

8.33

8.33

8.33

4.17

4.17

8.33

16.67

25.00

33.34

37.50

41.67

-5.14

-1.94

1.31

0.85

2.56

0.00

-2.03

-3.97

-2.66

-1.81

0.75

0.75

76.6 3.35 45.76

84.8 3.71 49.47

95.3 4.17 53.64

91.1 3.98 57.62

69.3 3.03 60.65

74.4 3.25 63.90

84.8 3.71 67.60

145.6 6.36 73.97

199.8 8.73 82.70

189.4 8.28 90.98

116.2 5.08 96.06

57.7 2.52 98.58

22.0 0.96 99.54

95.3

95.3

95.3

95.3

95.3

95.3

190.7

190.7

190.7

190.7

0 0 57 4.17

4.17

4.17

4.17

4.17

4.17

8.33

8.33

8.33

45.83

50.00

54.17

58.33

62.50

66.66

75.00

83.33

91.67

8.33 100.00

0.00 100.00

0.00 100.00

2.50 102.50

-0.82

-0.46

0.00

-0.18

-1.14

-0.91

-4.63

-1.97

0.40

-0.06

5.08

2.52

-1.54

-8.96

-9.02

-3.94

-1.42

-2.96

-0.07

-0.53

-0.53

-0.71

-1.85

-2.76

-7.39

-9.36

23 - 24 10.5 0.46 100.00

Összesen 2288.0 100.0

95.3

4.2

2288

57 2.50 105.00

2402.0 105.0

100.1

4.4

-2.04

max (+) max (-) összesen (%) összesen (m3)

-5.00

3.11

9.36

12.47

300 51

3. feladat IX.

 12,00

Vízfogyasztás és hálózati betáplálás alakulása

10,00 8,00

2 db szivattyú működik

6,00 4,00 Qf (%) Qsz (%) 2,00 0,00

Magastározó térfogatának meghatározása grafikusan

80,00

V ma

 9 .

36  3 .

11  12 .

47 %

Vízfogyasztás és hálózati betáplálás alakulás integrál görbéi

100,00

Idő (h)

60,00 40,00

9.36%

∑Qf (%) ∑Qsz (%)

1 db szivattyú működik

20,00 0,00

3.11%

52

Idő (h)

3. feladat X.

     Egy tűzeset oltó-víz igénye:

V

1

t

 15  3600  2 1000  108

m

3 Települési oltóvíz igény:

V tt

 30  3600  3 1000  324

m

3 V1t a magastározóban, míg a Vtt-V1t a mélytározóban tározható, így:   A magastározó szükséges térfogata: 300+108=408 m 3 A mélytározó szükséges térfogata: 541+324-108=757 m 3 Az össz. tározó térfogat: 408+757=1165 m 3 Az össz. tározó térfogat a napi vízigény: 51%-a (

147/2010. Korm. rend.: min 30%)

53

3. feladat XI.

A szivattyú állomás megtervezése után, a pontos munkapontok ismeretében az egész eddigi számítást finomítani kell!

54

4. feladat

Egy települési hálózat kis vízigényű önálló nyomászónája magastározó nélkül, frekvencia szabályozott betáplálással épül ki. Mekkora tűzivíz tározó kapacitás építendő ki a hálózatban, ha:  a nyomásfokozó állomás csúcsteljesítménye 18 l/s   A mértékadó oltóvíz igény: 13.3 l/s 3 órán át Az átlagos vízfogyasztás: 9,5 l/s

V tt

 (( 13 .

3  9 .

5 )  18 )  3  3600 1000  51 .

8

m

3 55

 

Hálózati betáplálási mód és magas tározó kapcsolata

Szivattyúk, hálózat és tárolók hidraulikailag egy szerves egységet alkotnak!

Kialakítási cél lehet :

Minimális tározó térfogat:

 Frekvencia szabályozású szivattyúk  a fogyasztás pontosan lekövethető      Hagyományos szivattyús betáplálás + hidrofor (légüst+ kompresszor) vagy tágulási tartályos rendszer esetén  a frekvencia szabályozású rendszernél elavultabb változat (ma már ritkán alkalmazzák)  

V k

=0 főleg kis rendszereknél

V k

akár 0 is lehet kis rendszereknél (300 m 3 /nap alatt)

Minimális energia költség

: csak éjszakai árammal történő hálózati betáplálás.

Éjszakai-nappali áram díjkülönbség nélkül a magas-tározónak csak üzembiztonsági funkciója van!

56

Hidrofor – Légüst – Tágulási tartály

 

Összehasonlítás:

A funkció azonos

 

szivattyú vezérlési elv azonos Nyomástartási mód különböző

  Tágulási tartály: membránnal működő nyomástartó edény Hidrofor: Légüst + kompresszor

Tágulási tartály működéséről lásd. mellékelt animáció.

57

Hidrofor működése I.

Q sz

: szivattyú vízszállítása (l/p)

x

: vízigény változó értéke (l/p)

P min

: nyomás a szivattyúzás megindításakor 58

Hidrofor működése II.

Légüst teljes térfogata:

V h

T K

Q sz

, (

l

) 4 59

5. feladat

Méretezzen le egy ipartelep vízellátását biztosító hidrofor rendszert, amennyiben ismertek az alábbi adatok:          A fogyasztó magasságkülönbsége: 40 m A minimális kifolyási nyomás: 2 bar A fogyasztóig az össz. vezetékhossz: 80 m A vezetékhálózat hosszú csővezetékként méretezhető.

A megengedett nyomásingadozás: 3 bar A szivattyú közepes vízszállatása: 500 l/p. A szivattyú ráfolyásos üzemű tározóból szív. A tározó ráfolyásából eredő többlet hidrosztatikai nyomás elhanyagolható.

A nyomócső rendszer 16 bar névleges nyomástűrésű.

A nyomó-légüst előfeszítési nyomása: 5 bar A csővezeték átmérője D b =89 mm (NA 100), effektív cső érdessége: 0,4 mm.

60

Nyomásövezetek

    A vízellátó hálózatban a maximális nyomás

6 bar

lehet. A A 30/2008. (XII. 31.) KvVM rendelet alapján a hálózatban minimálisan 1 bar nyomás biztosítandó a vízmérőnél. Hazai üzemeltetési gyakorlat minimálisan

1.5 bar

. Az ellátott épületek magasságától is függ a minimális biztosítandó nyomásszint. Szintenként 0.4 bar többlettel lehet számolni. Részletesen lásd Török L. segédletében.

Ezeknek a feltételeknek a biztosítása gyakran csak nyomásövetek kialakításával lehetséges. A nyomásövezetek kialakítását befolyásolják még:   Domborzati viszonyok Hálózati veszteségek alakulása a mértékadó üzemállapotban 61

     

Tárolók és szivattyúk funkciói több nyomásövezet esetén

Egy magas tározó csak egy nyomásövezetet lát el!

Egy nyomásövezetnek több magas tárolója is lehet! Egy hálózati szivattyútelep egy nyomóága csak egy nyomásövezetet láthat el!

Több nyomás övezet esetén az alsó övezet magas tározója, egyben a felső övezet mély tárolója is lehet Elképzelhető az is hogy a nyomásövezeteknek önálló nagynyomású tápvezetéke van Kis nyomásövezeteknél a magas tároló helyett a nyomásfokozó állomásnál elhelyezett hidrofor tartály, vagy frekvencia szabályozású nyomásfokozó telep tágulási tartállyal is beépíthető 62

Üzemállapotok

 1.

2.

3.

4.

5.

6.

Vizsgálandó üzemállapotok:

Csúcsfogyasztás Átlagfogyasztás + max. tűzesetek fellépése Átlagfogyasztás + főnyomócsövön csőtörés + egy tűzeset Csúcsfogyasztás + üzemzavar a termelő telepen Csúcsfogyasztás + magastározó váratlan leürülése Medencetöltés + legkisebb fogyasztás    

Az egyes üzemállapotok alapján meg kell határozni:

Mértékadó szivattyú munkapontok Magas tározó alsó üzemi vízszintjének magassága Tározó térfogatok A hálózathidraulikai számításokhoz újabb üzemállapotok felállítása is szükséges lehet a fogyasztási, helyszínrajzi és magassági 63 viszonyoktól függően. Részletesen lásd. Török László segédletében.

     

Tervfeladathoz javaslatok

Meg kell adni a betáplálás módját, mélytározó helyét, magas-tározó helyét (ha van).

Meg kell határozni a szivattyú telep mértékadó munkapontjait, szivattyúk számát, kapcsolási módját. Az emelőmagasságot egyenlőre csak becsülni lehet, mert még nincs pontos hálózati nyomvonal kiosztás. Ez után következhet csak a pontos szivattyú típus választás (wilo méretező program segítségével).

Meg kell határozni a szükséges mélytározó és magas-tározó térfogatokat. Meg kell becsülni a magas tározók minimális vízszintjét.

Az egyes üzemállapotok vizsgálatára a hálózati nyomvonal kiosztása után (jövő óra anyaga lesz) lehet rátérni.

A tervezési feladat megoldása iteratív jellegű: kezdeti érték felvétel – ellenőrzés – módosítás – újabb ellenőrzés. Ez több lépcsőben történik az optimális megoldás kialakulásáig.

64

           

Felhasznált irodalom

György István (szerk): Vízügyi létesítmények kézikönyve. Műszaki könyvkiadó Budapest1974.

Török László: Tervezési segédlet a település vízellátása tanulmányterv készítéséhez. Baja. 1998.

Közműhálózatok tervezése HEFOP/2004/3.3.1/0001.01 digitális jegyzet Dima A. – Jordán P.: Települések közműellátása. Nemzeti tankönyvkiadó, Budapest, 1996.

Öllős Géza – Borsos József: Vízellátás – Csatornázás I. Tankönyvkiadó, Budapest, 1990.

http://epeszgepesz.atw.hu/Tantargyak/Geptan/centrifugal%20szivatyu%20szab1.

1.pdf

Verba Attila: Vízgépek. Tankönyvkiadó, Budapest, 1975.

Látrányi Jenő – Zalka András: Fogaskerék szivattyúk és hidromotorok. BME Mérnöktovábbképző Intézet, Budapest. 1982.

Bozóky-Szezsich-Kovács-Illés: Vízellátás-csatornázás tervezési segédlet. Műegyetem kiadó, Budapest, 1999.

Györei Lászlóné: Közműépítés II. Példatár. Nemzeti tankönyvkiadó, Budapest.

Görözdi – Major – Zsuffa: Vízgazdálkodás példatár. Műszaki könyvkiadó, Budapest, 1983.

Völgyesi István: Épületgépészeti számítások példatára. Műszaki könyvkiadó, Budapest, 1966.

65

Köszönöm a megtisztelő figyelmet!

66