Tektronix PowerPoint Template - AVIT

Download Report

Transcript Tektronix PowerPoint Template - AVIT

3Gb/s SDI Interface
Yannick LE DREAU
 SMPTE Standards for 3Gb/s Interface
 Physical Layer Specification
 Mapping Structures
 3Gb/s Measurements
 3Gb/s Test Signals
2
4/8/2015
3Gb/s SDI Interface
Hybrid Facility
Picture
Formats
Sampling
Structures
Physical
Layer
3Gb/s SMPTE 424M
12-bit
4:4:4:4
Dual Link SMPTE 372M
1.5Gb/s SMPTE 292M
RGB(A)
RGB
YCbCr
4:2:2
10-bit
3
4/8/2015
Transmission
Media
3Gb/s SDI Interface
Blu-Ray
HD
SD
270Mb/s
Physical Layer
Cable Type
Termination
Inter-Connections
DVD
Dual Link Format
 Using existing HD-SDI infrastructure
 Requires two signal paths
– Link A & Link B
 SMPTE 352M to identify links
 Mapping various formats into
existing HD-SDI structure
 Interconnection issues
 Swapped or Missing links
 Cable Path different for each Link
4/8/2015
3Gb/s SDI Interface
Frame/ Field Rate
4:2:2 (Y’C’bC’r)
/ 10-bit
60, 60/1.001 & 50 P
4:4:4 (R’G’B’)
4:4:4:4 (R’G’B’ + A)
/ 10-bit
30. 30/1.001, 25, 24 &
24/1.001, P, PsF
60, 60/1.001 & 50
fields interlaced
4:4:4 (R’G’B’)
/ 12-bit
4:4:4 (Y’C’bC’r)
4:4:4:4 (Y’C’bC’r + A)
/ 10-bit
 Problems
4
Signal Format
Sampling Structure
/ Pixel Depth
4:4:4 (Y’C’bC’r)
/ 12-bit
4:2:2 (Y’C’bC’r)
/ 12-bit
Why 3Gb/s SDI and High Speed Data?

Work at the highest resolution (Bit Depth and Colorspace)
possible prior to rendering the product.

In standard HD-SDI limited to 4:2:2 YCbCr only at 10-bit

With Dual Link & 3Gb/s, users can:
– Increase color range from 10 bits to 12 bits
– Switch from 4:2:2 to 4:4:4 Sampling to the total
chrominance Bandwidth
– Work in the RGB domain for easier integration with Special
Effects editors, and Telecine applications
 Digital cinema cameras now being adopted for feature
films, television shows, and even commercials
– Panavision Genesis™
– Attack of the Clones, Revenge of the Sith, Apocalypto, …
– Thomson Viper FilmStream™
5
4/8/2015
3Gb/s SDI Interface
SMPTE424M
Signal/Data Serial Interface
 Defines the transport of bit-serial data structure for 3.0Gb/s
 Using a single coaxial cable interface
 Supports either 10 or 12 bits data words
 Mapped into two virtual interfaces
– 10 bit parallel data streams (Data Stream One & Data Stream Two)
7
4/8/2015
3Gb/s SDI Interface
Digital Line Blanking
Blanking Level or Ancillary Data
SAV
+ Line No. + CRC
Digital Line Blanking
Blanking Level or Ancillary Data
SAV
EAV
Digital Active Line
Active Picture or Ancillary Data
+ Line No. + CRC
Digital Active Line
Active Picture or Ancillary Data
EAV
Data stream two of the virtual interface
Interface Frequency 148.5MHz or
148.5/1.001 MHz
SAV
Data stream one of the virtual interface
Interface Frequency 148.5MHz or
148.5/1.001 MHz
SAV
Digital Line Period
Image Structure
 Example of image mapping structure for 4:2:2 YCbCr 10 bits 60/59.94
8
4/8/2015
Digital Active Line
Optional
Ancillary
Data
3Gb/s SDI Interface
SAV
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(XYZh)
Optional
Ancillary
Data
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(XYZh)
+ Line No. + CRC
EAV
Digital Active Line
Y’1918
Y’1919
EAV(3FFh)
EAV(000h)
EAV(000h)
EAV(XYZh)
LN0
LN1
CR0
CR1
Data Stream Two
Virtual Interface
Digital
Line
Blanking
C’B’959
C’R’959
EAV(3FFh)
EAV(000h)
EAV(000h)
EAV(XYZh)
LN0
LN1
CR0
CR1
Data Stream One
Virtual Interface
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(XYZh)
Y’ 0
Y’1
Y’2
Y’3
Digital Active Line
Active Picture or Ancillary Data
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(XYZh)
C’B’0
C’R’0
C’B’1
C’R’1
SAV
Digital Line Period
Multiplexed 10-bit
Parallel interface
9
4/8/2015
Digital Active Line
3Gb/s SDI Interface
C’B’959
Y’1918
C’R’959
Y’1919
EAV(3FFh)
EAV(3FFh)
EAV(000h)
EAV(000h)
EAV(000h)
EAV(000h)
EAV(XYZh)
EAV(XYZh)
LN0
LN0
LN1
LN10
CR0
CR0
CR1
CR1
Optional
Ancillary
Data
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(XYZh)
Optional
Ancillary
Data
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(XYZh)
Y’1918
Y’1919
EAV(3FFh)
EAV(000h)
EAV(000h)
EAV(XYZh)
LN0
LN1
CR0
CR1
Digital Active Line
C’B’959
C’R’959
EAV(3FFh)
EAV(000h)
EAV(000h)
EAV(XYZh)
LN0
LN1
CR0
CR1
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(XYZh)
Y’ 0
Y’1
Y’2
Y’3
Digital Active Line
Optional
Ancillary
Data
SAV(3FFh)
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(000h)
SAV(000h)
SAV(XYZh)
SAV(XYZh)
Data Stream Two
Virtual Interface
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(XYZh)
C’B’0
C’R’0
C’B’1
C’R’1
Data Stream One
Virtual Interface
SAV(3FFh)
SAV(3FFh)
SAV(000h)
SAV(000h)
SAV(000h)
SAV(000h)
SAV(XYZh)
SAV(XYZh)
C’B’0
Y’ 0
C’R’0
Y’1
C’B’1
Y’2
C’R’1
Y’3
Image Structure Multiplexed
 Data Stream one and two of the virtual interfaced are multiplexed
together producing twice the data rate
 Channel Coding uses NRZI
Mapping 2x SMPTE 292 HD-SDI Level B
 Mapping of two parallel 10 bit interfaces with same line and frame
structure in conformance with SMPTE292.
10-bit multiplex in
accordance with SMPTE 292M
Y’3
Y’2
C’R’1
C’B’1
C’R’0
Y’1
Y’ 0
C’B’0
SAV(XYZh)
SAV(XYZh)
SAV(000h)
SAV(000h)
SAV(000h)
SAV(3FFh)
SAV(000h)
SAV(3FFh)
CR1
CR1
CR0
Optional
Ancillary
Data
CR0
LN1
LN10
LN0
LN0
EAV(XYZh)
EAV(XYZh)
SAV
CRC
LN
EAV(000h)
EAV(000h)
EAV(000h)
EAV(000h)
EAV(3FFh)
EAV(3FFh)
Y’1919
C’R’959
Y’1918
C’B’959
EAV
Interface clock frequency
148.5MHz or 148.5MHz/1.001 MHz
 Payload Identifier
10
Mapping Nomenclature
Byte 1 Video payload and digital interface
SMPTE 372M Dual link payload on a 3 Gb/s serial digital interface
8Ah
2 x720-line video payload on a 3 Gb/s serial digital interface
8Bh
2 x1080-line video payload on a 3 Gb/s serial digital interface
8Ch
2 x483/576-line video payload on a 3 Gb/s serial digital interface
8Dh
4/8/2015
3Gb/s SDI Interface
Mapping 2x SMPTE 292 HD-SDI Level B
11
4/8/2015
3Gb/s SDI Interface
Level B “Fast Progressive” Dual Link SMPTE372M
12
4/8/2015
Y’ 3
Y’ 2
C’b 1
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
as defined in SMPTE 274M
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
Y’ 1
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
Y’ 1
C’r 0
C’r 1
C’r 1
Y’ 0
C’b 0
C’b 0
Y’ 0
SAV(XYZh)
SAV(XYZh)
3Gb/s SDI Interface
Y’ 1
Y’ 0
C’b 0
SAV(000h)
SAV(000h)
C’r 0
Y’ (N)
Y’ (N-1)
C’b (N)
SAV(000h)
SAV(000h)
C’r (N)
Y’ (N-2)
Y’ (N-3)
C’b (N-1)
SAV(3FFh)
Optional
Ancillary
Data
SAV(3FFh)
C’r (N-1)
Y’ (N-4)
Y’ (N-5)
C’b (N-2)
CR1
Optional
Ancillary
Data
CR1
C’r (N-2)
Y’ 1927
Y’ 1926
C’b 963
C’r 963
CR0
LN1
LN1
CR0
Y’ 1925
Y’ 1924
LN0
EAV(XYZh)
EAV(XYZh)
LN0
EAV(000h)
EAV(000h)
C’r 962
C’b 962
Y’ 1923
Y’ 1922
C’b 961
EAV(000h)
EAV(000h)
C’r 961
Y’ 1921
Y’ 1920
C’b 960
EAV(3FFh)
EAV(3FFh)
C’r 960
Y’ 1919
Y’1919
C’r 959
Y’1919
Y’1918
C’r 959
C’b 959
Data Stream Two
Of the virtual interface
Link B
Y’1918
Data Stream One
Of the virtual interface
Link A
C’b 959
C’r Data
C’b 959
C’b Data
C’r 959
Y’ Data
Y’ 1918
SMPTE 274M 4:2:2 YCbCr 10 bit 60,59,94 & 50
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
Dual Link SMPTE372M
SMPTE 274M 4:2:2 YCbCr 10 bit 60,59,94 & 50
13
4/8/2015
3Gb/s SDI Interface
SMPTE425M
Signal/Data Serial Interface
Source Image Format (Level A)
Mapping
structure
Reference
SMPTE
Standard
Picture Format
1
274M
1920  1080
Signal Format sampling
structure/pixel Depth
4:2:2 (Y’C’BC’R)/10-bit
4:4:4 (R’G’B’),
4:4:4:4 (R’G’B’ +A)/10-bit
296M
1280 x 720
4:4:4 (Y’C’BC’R),
4:4:4:4 (Y’C’BC’R+A)/10-bit
2
4:4:4 (R’G’B’),
4:4:4:4 (R’G’B’ +A)/10-bit
274M
1920 x 1080
4:4:4 (Y’C’BC’R),
4:4:4:4 (Y’C’BC’R+A)/10-bit
4:4:4 (R’G’B’)/12-bit
274M
1920 x 1080
3
4
14
4/8/2015
4:4:4 (Y’C’BC’R)/12-bit
Frame/Field Rates
60, 60/1.001 and 50 Frames Progressive
60, 60/1.001 and 50 Frames Progressive
30, 30/1.001, 25, 24 and 24/1.001 Frames
Progressive
60, 60/1.001 and 50 Fields Interlaced
30, 30/1.001, 25, 24 and 24/1.001 Frames
Progressive
60, 60/1.001 and 50 Fields Interlaced
30, 30/1.001, 25, 24 and 24/1.001 Frames
Progressive
428
2048  1080
4:4:4 (X’Y’Z’)/12-bit
24 Frames Progressive, PsF
274M
1920 x 1080
4:2:2 (Y’C’BC’R)/12-bit
30, 30/1.001, 25, 24 and 24/1.001 Frames
Progressive
60, 60/1.001 and 50 Fields Interlaced
3Gb/s SDI Interface
Comparison of Level A vs. Level B
 1080p 50/59.94/60
– SMPTE 425 Mapping structure 1 – alternates Y and Cb/Cr samples,
effect is similar to standard HD-SDI but at twice the rate
Stream 1
Stream 2
Y0
Y2
Y4
…
Y1916
Y1918
Y1
Y3
Y5
…
Y1917
Y1919
Cb0
Cb1
Cb2
…
Cb958
Cb959
Cr0
Cr1
Cr2
…
Cr959
Cr959
– SMPTE 372M §4.1 – alternates entire lines, each with Y and Cb/Cr
15
4/8/2015
Stream 1
(Line N+1)
Cb0
Cr0
Cb1
…
Cb959
Cr959
Y0
Y1
Y2
…
Y1918
Y1919
Stream 2
(Line N)
Cb0
Cr0
Cb1
…
Cb959
Cr959
Y0
Y1
Y2
…
Y1918
Y1919
3Gb/s SDI Interface
SMPTE 425M Mapping 1
16
4/8/2015
Y’3
Y’2
C’B 1
Frame
Rate
First active
sample number
Last active
sample
number
Last Sample
number 'n'
(total lines)
274M Sys 1 & 2
60 or 60/1.001
0
1919
2199
274M Sys 3
50
0
1919
2639
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
Y’3
C’R’1
Y’2
C’B’1
Y’1
C’R’0
SAV(XYZh)
C’R 0
SAV(XYZh)
SAV(000h)
Y’ 0
SAV(000h)
SAV(000h)
Reference
SMPTE Standard
3Gb/s SDI Interface
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
C’B’0
SAV(000h)
Optional
Ancillary
Data
C’R 1
Y’1
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
as defined in SMPTE 274M
C’B 0
Y’ 0
Y’ (N)
Y’ (N-1)
C’B (N)
C’R (N)
Y’ (N-2)
Y’ (N-3)
SAV(3FFh)
C’B (N-1)
Optional
Ancillary
Data
SAV(3FFh)
C’R (N-1)
Y’ (N-4)
Y’ (N-5)
C’B (N-2)
CR1
CR1
C’R (N-2)
Y’1927
Y’1926
C’B963
CR0
CR0
LN1
LN1
C’R963
Y’1925
Y’1924
LN0
EAV(XYZh)
EAV(XYZh)
LN0
EAV(000h)
EAV(000h)
C’R962
C’B962
Y’1923
Y’1922
C’B961
EAV(000h)
EAV(000h)
C’R961
Y’1921
Y’1920
C’B960
EAV(3FFh)
EAV(3FFh)
C’R960
Y’1919
C’R’959
Data Stream Two
Of the virtual interface
Y’1918
Data Stream One
Of the virtual interface
C’B’959
C’r Data
C’R959
C’b Data
C’B959
Y’1918
Y’ Data
Y’1919
SMPTE 274M 4:2:2 YCbCr 10 bit 60,59,94 & 50
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
SMPTE 425M Mapping 1 Data Display Data mode
SMPTE 274M 4:2:2 YCbCr 10 bit 60,59,94 & 50
17
4/8/2015
3Gb/s SDI Interface
SMPTE 425M Mapping 1 Data Display Video mode
SMPTE 274M 4:2:2 YCbCr 10 bit 60,59,94 & 50
18
4/8/2015
3Gb/s SDI Interface
SMPTE 425M Mapping 2
4:4:4:4 RGB (A) or 4:4:4:4 YCbCr (A) 10-bit
19
G0 R0 G1 R1 G2 R2
Data Stream One
Y0 Pr0 Y1 Pr1 Y2 Pr2
A0 B0 A1 B1 A2 B2
Data Stream Two
A0 Pb0 A1 Pb1 A2 Pb2
Reference
SMPTE Standard
Frame
Rate
First active
sample number
Last active
sample number
Last Sample
number 'n'
(total lines)
296M Sys 1 & 2
60 or 60/1.001
0
1279
1649
296M Sys 3
50
0
1279
1979
274M Sys 4 & 5, 7 & 8
30 or 30/1.001
0
1919
2199
296M Sys 4 & 5
30 or 30/1.001
0
1279
3299
274M Sys 6 & 9
25
0
1919
2639
296M Sys 6
25
0
1279
3959
274M Sys 10 & 11
24 or 24/1.001
0
1919
2749
296M Sys 7 & 8
24 or 24/1.001
0
1279
4124
4/8/2015
3Gb/s SDI Interface
SMPTE 425M Mapping 2
20
4/8/2015
G’ 1
B’ 1
R’ 1
A1
G’ 0
B’ 0
R’ 0
A0
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
R’1
G’1
R’0
G’ 0
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
B’1
A1
B’0
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
A0
G’ (N)
B’ (N)
R’ (N)
SAV(XYZh)
SAV(XYZh)
A (N)
SAV(000h)
SAV(000h)
G’(N-1)
B’(N-1)
R’(N-1)
SAV(000h)
Optional
Ancillary
Data
SAV(000h)
A (N-1)
SAV(3FFh)
G’(N-2)
B’(N-2)
R’(N-2)
A (N-2)
3Gb/s SDI Interface
Optional
Ancillary
Data
SAV(3FFh)
G’(a+4)
B’(a+4)
R’(a+4)
A (a+4)
CR1
CR1
CR0
CR0
G’(a+3)
B’(a+3)
R’(a+3)
A (a+3)
LN1
LN1
LN0
LN0
G’(a+2)
B’(a+2)
R’(a+2)
EAV(XYZh)
EAV(XYZh)
A (a+2)
EAV(000h)
EAV(000h)
G’(a+1)
B’(a+1)
R’(a+1)
EAV(000h)
EAV(000h)
A (a+1)
EAV(3FFh)
EAV(3FFh)
G’(a)
B’(a)
R’(a)
A (a)
R’ (a)
B’ (a)
B’ (a-1)
Data Stream Two
Of the virtual interface
A (a-1)
Data Stream One
Of the virtual interface
G’ (a)
R’(a-1)
A’ Data
A (a)
G’(a-1)
B’(a-1)
R’/ C’b Data
R’(a-1)
B’ / C’b Data
G’(a-1)
G’ / Y’ Data
A (a-1)
4:4:4:4 RGB (A) or 4:4:4:4 YCbCr (A) 10-bit
Comparison of Level A vs. Level B
 4:4:4(:4) 10-bit
– SMPTE 425 Mapping structure 2 – R samples always on stream 1, B on
stream 2. Alpha channel on stream 2.
Stream 1
Stream 2
Y0 or G0
Y1 or G1
Y2 or G2
…
Y/G1919
Cr0 or R0
Cr1 or R1
Cr2 or R2
…
Cr/R1919
A0
A1
A2
…
A1919
Cb0 or B0
Cb1 or B1
Cb2 or B2
…
Cb/B1919
– SMPTE 372M §4.2 – Even B+R samples on stream 1, odd B+R samples
on stream 2. Alpha channel on stream 2.
Stream 1
Stream 2
21
4/8/2015
Cb0 or B0
Cr0 or R0
Cb2 or B2
…
Cr/R1918
Y0 or G0
Y1 or G1
Y2 or G2
…
Y/G1919
Cb1 or B1
Cr1 or R1
Cb3 or B3
…
Cr/R1919
A0
A1
A2
…
A1919
3Gb/s SDI Interface
SMPTE 425M Mapping 3
4:4:4 RGB or 4:4:4 YCbCr or XYZ 12-bit
Data Stream One
RGB/XYZ[11:9]
a/n
RGB/XYZ[5:3]
a/n
RGB/XYZ[11:9 ]
a+1/n+1
RGB/XYZ[5:3]
a+1/n+1
RGB/XYZ[11:9 ]
a+2/n+2
RGB/XYZ[5:3]
a+2/n+2
Data Stream Two
RGB/XYZ[8:6]
a/n
RGB/XYZ[2:0]
a/n
RGB/XYZ[8:6]
a+1/n+1
RGB/XYZ[2:0]
a+1/n+1
RGB/XYZ[8:6 ]
a+2/n+2
RGB/XYZ[2:0]
a+2/n+2
G’B’R’/X’Y’Z’(a) / (n) [x:y] bit structure mapping into data words of the virtual interface
Bit Number
Data Stream
22
9
8
7
6
5
4
3
2
1
0
Data Stream One
First word of
Sample (a) / (n)
Not B8
R’/C‘r/X'
(a) / (n) [11:9]
G’/Y'/Y’
(a) / (n) [11:9]
B'/C’b/Z’ (a) / (n)
[11:9]
Data Stream One
First word of
Sample (a) / (n)
Not B8
R’/C‘r/X'
(a) / (n) [5:3]
G’/Y'/Y’
(a) / (n) [5:3]
B'/C’b/Z’
(a) / (n) [5:3]
Data Stream Two
First word of
Sample (a) / (n)
Not B8
R’/C‘r/X’
(a) / (n) [8:6]
G’/Y'/Y’
(a) / (n) [8:6]
B'/C’b/Z’
(a) / (n) [8:6]
Data Stream Two
First word of
Sample (a) / (n)
Not B8
R’/C‘r/X’
(a) / (n) [2:0]
G’/Y'/Y’
(a) / (n) [2:0]
B'/C’b/Z’
(a) / (n) [2:0]
4/8/2015
3Gb/s SDI Interface
SMPTE 425M Mapping 3
4:4:4 RGB or 4:4:4 YCbCr or XYZ 12-bit
Data Stream One
GBR/XYZ[11:9]
a/n
GBR/XYZ[5:3]
a/n
GBR/XYZ[11:9 ]
a+1/n+1
GBR/XYZ[5:3]
a+1/n+1
GBR/XYZ[11:9 ]
a+2/n+2
GBR/XYZ[5:3]
a+2/n+2
Data Stream Two
GBR/XYZ[8:6]
a/n
GBR/XYZ[2:0]
a/n
GBR/XYZ[8:6]
a+1/n+1
GBR/XYZ[2:0]
a+1/n+1
GBR/XYZ[8:6 ]
a+2/n+2
GBR/XYZ[2:0]
a+2/n+2
Location of the first and last active samples for 4:4:4 (R’G’B’) and (X’Y’Z’)/12-bit Signals
23
Reference
SMPTE Standard
Frame
Rate
First active
sample number
Last active
sample
number (a)
274M Sys 4 & 5, 7 & 8
30 or 30/1.001
0
1919
2199
274M Sys 6 & 9
25
0
1919
2639
274M Sys 10 & 11
24 or 24/1.001
0
1919
2749
yyyM
24
0
2039
2749
4/8/2015
3Gb/s SDI Interface
Last Sample
number 'n'
(total lines)
SMPTE 425M Mapping 3
4:4:4 RGB or 4:4:4 YCbCr or XYZ 12-bit
G/X 1
C'B 1
G/X 0
RGB(1)11:9
RGB(1)5:3
RGB (1)8:6
RGB (1)2:0
C'R 1
C'B 0
RGB(0)5:3
RGB (0)2:0
C'R 0
RGB(0)11:9
RGB (0)8:6
G/X (N)
C'B (N)
SAV(XYZh)
SAV(XYZh)
C'R (N)
SAV(000h)
Optional
Ancillary
Data
SAV(000h)
G/X (N-1)
Optional
Ancillary
Data
SAV(000h)
C'B(N-1)
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
SAV(000h)
C'R (N-1)
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
SAV(3FFh)
G/X (N-2)
C'B(N-2)
C'R (N-2)
3Gb/s SDI Interface
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
SAV(3FFh)
G/X (a+4)
C'B (a+4)
EAV(XYZh)
EAV(XYZh)
C'R (a+4)
EAV(000h)
EAV(000h)
CR1
EAV(000h)
EAV(000h)
CR1
EAV(3FFh)
EAV(3FFh)
CR0
RGB (a)5:3
RGB (a)2:0
4/8/2015
CR0
RGB (a)11:9
RGB (a)8:6
G/X (a+3)
RGB(a-1)5:3
RGB (a-1)2:0
24
LN1
RGB(a-1)11:9
Data Stream Two
Of the virtual interface
LN1
Data Stream One
Of the virtual interface
RGB (a-1)8:6
R’/ C’r /Z’ Data
LN0
B’/ C’b /Y’ Data
LN0
G’/ Y’ /X’ Data
C'B (a+3)
GBR/XYZ[2:0]
a+2/n+2
C'R (a+3)
GBR/XYZ[8:6 ]
a+2/n+2
G/X (a+2)
GBR/XYZ[2:0]
a+1/n+1
C'B (a+2)
GBR/XYZ[8:6]
a+1/n+1
C'R (a+2)
GBR/XYZ[2:0 ]
a/n
G/X (a+1)
GBR/XYZ[8:6]
a/n
C'B (a+1)
Data Stream Two
C'R (a+1)
GBR/XYZ[5:3]
a+2/n+2
G/X (a)
GBR/XYZ[11:9 ]
a+2/n+2
C'B (a)
GBR/XYZ[5:3]
a+1/n+1
C'R (a)
GBR/XYZ[11:9 ]
a+1/n+1
G/X (a-1)
GBR/XYZ[5:3]
a/n
C'B (a-1)
GBR/XYZ[11:9]
a/n
C'R (a-1)
Data Stream One
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
SMPTE 425M Mapping 3
4:4:4 XYZ 12-bit
G/X 1
C'B 1
G/X 0
XYZ(1)11:9
XYZ(1)5:3
XYZ (1)8:6
XYZ (1)2:0
C'R 1
C'B 0
XYZ(0)5:3
XYZ (0)2:0
C'R 0
XYZ(0)11:9
XYZ (0)8:6
G/X (N)
C'B (N)
SAV(XYZh)
SAV(XYZh)
C'R (N)
SAV(000h)
Optional
Ancillary
Data
SAV(000h)
G/X (N-1)
Optional
Ancillary
Data
SAV(000h)
C'B(N-1)
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
SAV(000h)
C'R (N-1)
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
SAV(3FFh)
G/X (N-2)
C'B(N-2)
C'R (N-2)
3Gb/s SDI Interface
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
SAV(3FFh)
G/X (a+4)
C'B (a+4)
EAV(XYZh)
EAV(XYZh)
C'R (a+4)
EAV(000h)
EAV(000h)
CR1
EAV(000h)
EAV(000h)
CR1
EAV(3FFh)
EAV(3FFh)
CR0
XYZ(a)5:3
XYZ (a)2:0
4/8/2015
CR0
XYZ(a)11:9
XYZ (a)8:6
G/X (a+3)
XYZ(a-1)5:3
XYZ (a-1)2:0
25
LN1
XYZ(a-1)11:9
Data Stream Two
Of the virtual interface
LN1
Data Stream One
Of the virtual interface
XYZ (a-1)8:6
R’/Z’ Data
LN0
B’/Y’ Data
LN0
G’/X’ Data
C'B (a+3)
GBR/XYZ[2:0]
a+2/n+2
C'R (a+3)
GBR/XYZ[8:6 ]
a+2/n+2
G/X (a+2)
GBR/XYZ[2:0]
a+1/n+1
C'B (a+2)
GBR/XYZ[8:6]
a+1/n+1
C'R (a+2)
GBR/XYZ[2:0 ]
a/n
G/X (a+1)
GBR/XYZ[8:6]
a/n
C'B (a+1)
Data Stream Two
C'R (a+1)
GBR/XYZ[5:3]
a+2/n+2
G/X (a)
GBR/XYZ[11:9 ]
a+2/n+2
C'B (a)
GBR/XYZ[5:3]
a+1/n+1
C'R (a)
GBR/XYZ[11:9 ]
a+1/n+1
G/X (a-1)
GBR/XYZ[5:3]
a/n
C'B (a-1)
GBR/XYZ[11:9]
a/n
C'R (a-1)
Data Stream One
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
Comparison of Level A vs. Level B
 4:4:4 12-bit
– SMPTE 425 Mapping structure 3 – every 10 bit word includes 3 bits of
each of the three channels (four words comprise complete sample)
Stream 1
Stream 2
9
B8
B8
B8
B8
8
7
6
Cr or R [11:9]
Cr or R [5:3]
Cr or R [8:6]
Cr or R [2:0]
5
4
3
Y or G [11:9]
Y or G [5:3]
Y or G [8:6]
Y or G [2:0]
2
1
0
Cb or B [11:9]
Cb or B [5:3]
Cb or B [8:6]
Cb or B [2:0]
– SMPTE 372M §4.3 and §4.4 – most significant 10 bits of the three
channels appear as in §4.2 formats, and two LSBs of each channel are
grouped together into a single word that displaces the A channel
Stream 1
Stream 2
Cb0/B0
Cr0 or R0
…
Cb/B1918
Cr/R1918
Y0 or G0
Y1 or G1
…
Y/G1918
Y/G1919
Cb1 or B1
Cr1 or R1
…
Cb/B1919
Cr/R1919
SMPTE 425M Mapping 4
4:2:2 YCbCr 12 bit
Data Stream One
Y[11:6]
a-1/n-1
Y[5:0]
a-1/n-1
Y[11:6 ]
a/n
Y[5:0]
a/n
Y[11:6 ]
a+1/n+1
Y[5:0]
a+1/n+1
Data Stream Two
Cb[11:6]
a/n
Cb[5:0 ]
a/n
Cr[11:6]
a/n
Cr[5:0]
a/n
Cb[11:6 ]
a+1/n+!
Cb[5:0]
a+1/n+1
 G’/X’ samples maybe replaced with Y’ samples
 B’/Y’ samples maybe replaced with C’b samples
 R’/Z’ samples maybe replaced with C’r samples
27
Reference
SMPTE Standard
Frame
Rate
First active
sample number
Last active
sample
number (a)
274M Sys 4 & 5, 7 & 8
30 or 30/1.001
0
1919
2199
274M Sys 6 & 9
25
0
1919
2639
274M Sys 10 & 11
24 or 24/1.001
0
1919
2749
4/8/2015
3Gb/s SDI Interface
Last Sample
number 'n'
(total lines)
SMPTE 425M Mapping 4
4:2:2 YCbCr 12 bit
Data Stream One
Y[11:6]
a-1/n-1
Y[5:0]
a-1/n-1
Y[11:6 ]
a/n
Y[5:0]
a/n
Data Stream Two
Cb[11:6]
a/n
Cb[5:0 ]
a/n
Cr[11:6]
a/n
Cr[5:0]
a/n
Bit Number
Data Stream
9
8
7
6
5
4
3
2
Data Stream One
First word of
Sample (a) / (n)
1
Reserved
Y' (a) / (n) [11:6]
Data Stream One
First word of
Sample (a) / (n)
1
Reserved
Y' (a) / (n) [5:0]
1
0
1
0
Bit Number
28
Data Stream
9
Data Stream Two
First word of
Sample (a) / (n)
1
Reserved
C‘B (a) / (n) [11:6]
Data Stream Two
First word of
Sample (a) / (n)
1
Reserved
C‘B (a) / (n) [5:0]
Data Stream Two
First word of
Sample (a) / (n)
1
Reserved
C‘R (a) / (n) [11:6]
Data Stream Two
First word of
Sample (a) / (n)
1
Reserved
C‘R (a) / (n) [5:0]
4/8/2015
8
7
3Gb/s SDI Interface
6
5
4
3
2
SMPTE 425M Mapping 4
29
4/8/2015
Y’3
Y’2
Y’ (0)11:6
Y‘ (0)5:0
Y’ (1)11:6
Y’ -1)5:0
C’B (0)11:6
C’B (0)5:0
C’R (0)11:6
C’R (0)5:0
C'B 1
Y’1
Y’ 0
C'B 0
SAV(XYZh)
SAV(XYZh)
C'R 0
Y’ (N)
SAV(000h)
Optional
Ancillary
Data
SAV(000h)
C'B (N)
Optional
Ancillary
Data
SAV(000h)
Interface sampling frequency
= 37.125MHz or 37.125/1.001 MHz
as defined in SMPTE 274M
SAV(000h)
C'R (N)
Y’ (N-3)
C'B(N-1)
Interface sampling frequency
= 37.125MHz or 37.125/1.001 MHz
as defined in SMPTE 274M
SAV(3FFh)
C'R (N-1)
3Gb/s SDI Interface
Interface sampling frequency
= 74.25MHz or 74.25/1.001 MHz
as defined in SMPTE 274M
SAV(3FFh)
CR1
CR1
CR0
CR0
LN1
LN1
LN0
LN0
EAV(XYZh)
EAV(XYZh)
C'B (a+2)
EAV(000h)
EAV(000h)
C'R (a+2)
EAV(000h)
EAV(000h)
C'B (a+1)
EAV(3FFh)
EAV(3FFh)
C'R (a+1)
Y’ (a)5:0
C'B (a)
C'R (a)
C’R (a)5:0
Y’ (a)11:6
Data Stream Two
Of the virtual interface
C’R (a)11:6
C'B (a-1)
Y’ (a-1)11:6
C'R (a-1)
Data Stream One
Of the virtual interface
C’B (a)11:6
C’R Data
Y’ (a-1)5:0
C’B Data
C’B (a)5:0
Y’ Data
Y’ (N-1)
Cr[5:0]
a/n
Y’ (N-2)
Cr[11:6]
a/n
Y’ (a+4)
Cb[5:0 ]
a/n
Y’ (a+3)
Cb[11:6]
a/n
Y’(a+2)
Data Stream Two
Y’(a+1)
Y[5:0]
a/n
Y’ (a)
Y[11:6 ]
a/n
Y’(a-1)
Y[5:0]
a-1/n
Y’(a-2)
Y[11:6]
a-1/n
Y’(a-3)
Data Stream One
C'R 1
4:2:2 YCbCr 12 bit
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
Interface sampling frequency
= 148.5MHz or 148.5/1.001 MHz
Comparison of Level A vs. Level B
 4:2:2 12-bit
– SMPTE 425 Mapping structure 4 – two 10 bit words each carry 6 bits of
each of the three channels. No alpha channel is supported, despite the
available space (four bits unused per word).
Y0 [11:6]
Y1 [11:6]
…
Y1919
Y0 [5:0]
Y1 [5:0]
…
Y1919
Cb0 [11:6]
Cr0 [11:6]
…
Cr959
Cb0 [5:0]
Cr0 [5:0]
…
Cr959
Stream 1
Stream 2
– SMPTE 372M §4.5 – Stream 1 carries the 10 MSBs of each sample in
the familiar Cb/Y/Cr/Y sequence, and stream 2 carries a word of LSBs (2
bits per channel) plus a 10 bit alpha channel.
Stream 1
Stream 2
Cb0 [11:2]
Cr0 [11:2]
…
Cb959 [11:2]
Cr959 [11:2]
Y0 [11:2]
Y1 [11:2]
…
Y1918 [11:2]
Y1919 [11:2]
A0
A1
…
A1918
A1919
3Gb/s Serial Digital Interface
 Pk-to-Pk Amplitude 800mV +/- 10%
 DC Offset 0.0V +/- 0.5V
 Rise/Fall Time between 20% & 80% no greater than 135ps and not
differ by more than 50ps
 Overshoot rise/fall not to exceed 10% of amplitude
 Timing Jitter <= 2UI above 10Hz
 Alignment Jitter <= 0.3UI above 100kHz
32
4/8/2015
3Gb/s SDI Interface
Eye Specifications per SMPTE Standards
Rise/Fall Time
SD
Unit Interval
33
SD
(259M)
HD
(292M)
3Gb/s
(424M)
3.7ns
673.4ps
336.7ps
4/8/2015
3Gb/s SDI Interface
Shall be no less
than 0.4ns, no
greater than 1.50ns,
and shall not differ
by more than 0.5ns
HD
Shall be no greater
than 270ps and
shall not differ by
more than 100ps
3Gb/s
Shall be no greater
than 135ps and
shall not differ by
more than 50ps
How to Make Eye Measurement
 Eye Display
 Launch Amplitude
 Short Length of Cable
80%
Amplitude
Rise Time
Fall Time
 Color Bar Test Signal
 Automated Measurements
– Available on WM8300
20%
– Amplitude Histogram
– Simplifies The Task
 Infinite persistence can aid
in seeing eye opening
34
4/8/2015
3Gb/s SDI Interface
Eye Pattern Distortions
Long cable
Termination
Shift in Eye Crossing

Decrease in amplitude



Decrease in Frequency
response
Shifts 50% point of eye
opening

Caused by unequal rise or
fall time

Eye opening narrows

Rise/Fall time increases
35
4/8/2015
Incorrect termination
causes overshoot and
undershoot
3Gb/s SDI Interface
Jitter Measurements
 Timing Jitter
Timing
Jitter
(10Hz)
The
variation
in position of a signal’s
SD
HDat a rate greater
3Gb/sthan
transitions
occurring
0.2UIa(740ps)
1.0UI typically 10Hz
2.0UI
specified frequency,
(673.4ps @
1.485Gb/s)
(674ps @
1.4835Gb/s)
(673.4ps @
2.97Gb/s)
(674ps @
2.967Gb/s)
 Alignment Jitter
Alignment
Jitter
The variation
in position of a signal’s
SD
3Gb/s
transitions
relative HD
to those of a clock
0.2UI
(740ps) @ from
0.2UI
(135ps)
@
0.3UI (101ps) @
extracted
the
signal.
1kHz
36
4/8/2015
100kHz
100kHz Maximum
Preferred 0.2UI
(67.3ps) @ 100kHz
3Gb/s SDI Interface
What is Jitter?
 Definition:
Jitter is defined as the variation of a
digital signal’s significant instants (such
as transition points) from their ideal
0
positions in time.
1 UI
1
1
0
1
 Time Interval Error – Jitter
 Introduced by frequency, amplitude and
phase variation in signals transition
Tj Jitter Frequency (Hz) = 1/Tj
Jitter Amplitude
(peak-to-peak)
37
4/8/2015
3Gb/s SDI & Advanced Data Analysis
Types of Jitter

Types of Jitter

Random
– Random Process
– No Discernible pattern
– All devices have random jitter present
– Thermal or shot noise
– Model by Gaussian distribution

Deterministic
– Switching PSU
– Frequency response
– cable or device
– Rise/Fall Time of Transition
38
4/8/2015
3Gb/s SDI & Advanced Data Analysis
Why noise can introduce jitter
39
4/8/2015
3Gb/s SDI & Advanced Data Analysis
Cable frequency responce introduces jitter
 Risign edges have high frequency content
 Repetitive patterns have lower frequency content
 Frfequencies travel at different speed in the cable (group delay)
 This effect is visible only with long cables
40
4/8/2015
3Gb/s SDI & Advanced Data Analysis
Methods of Measuring Jitter

The Equivalent-time Eye method constructs an
– Equivalent-time Eye diagram of the signal and measures the amount the
edge samples in the Eye vary from their ideal positions.

The Real-time Acquisition method
– Applies signal processing algorithms to one or more acquisition records
captured in real-time from single trigger events to measure the amount
each signal edge in the acquisition record varies from its ideal position.

The Phase Demodulation method
– Applies two appropriately filtered clock signals to a phase detector. The
output from the phase detector is the demodulated jitter signal.

Color Bar Test signal Recommended not Pathological
41
4/8/2015
3Gb/s SDI & Advanced Data Analysis
EQ time Acquisition
42
4/8/2015
3Gb/s SDI & Advanced Data Analysis
Phase demodulation Method
43
4/8/2015
3Gb/s SDI & Advanced Data Analysis
PK-Pk but in which time interval?
44
4/8/2015
3Gb/s SDI & Advanced Data Analysis
How to Make Jitter Measurements
 Jitter Meter shows
direct readout
 Ability to measure
Timing and Alignment
jitter simultaneously
 Jitter waveform show
variation of signal
related to line and
field rate of video
signal
45
4/8/2015
3Gb/s SDI Interface
HD3G7
3 Gb/s SDI Generator/Converter Module for the TG700
 All 1080-line formats of SMPTE 425 now supported
– YPbPr 4:2:2/4:4:4 10/12-bit
– RGB 4:4:4 10/12-bit
– XYZ 4:4:4 12-bit
– Complete coverage of both Level A and Level B mappings
 Wide variety of standard test signals
 Two signal outputs
 HD-SDI input for up-converter function
 Trigger output (frame pulse or 148.5 MHz clock) for external
oscilloscope synchronization
46
4/8/2015
3Gb/s SDI Interface
SDI Checkfield Test Pattern
 Defined in SMPTE RP 198 for HD-SDI
 Equalizer test pattern has maximum DC content
– Uses 20 bit pattern 1100000000 0110011000 (300h 198h) input to the
scrambler for the serial data stream
– Produces output with repeated pattern of 19 consecutive high (low)
states followed by 1 low (high) state
– Corresponds to Y=198h, Cb=Cr=300h (shade of magenta) for HD-SDI
47
4/8/2015
3Gb/s SDI Interface
SDI Checkfield Test Pattern
 PLL test pattern has maximum low-frequency content and minimum
high-frequency content
– Uses 20 bit pattern 1000000000 0100010000 (200h 110h) input to the
scrambler for the serial data stream
– Produces output with repeated pattern of 20 consecutive high (low)
states followed by 20 consecutive low (high) state
– Corresponds to Y=110h, Cb=Cr=200h (23.74% gray) for HD-SDI
48
4/8/2015
3Gb/s SDI Interface
SDI Checkfield Test Pattern for 3G-SDI
 Why are the colors wrong?
 In order to produce the same pathological patterns in the serial bit
stream, the 10 bit words must be sequenced in the same order
HD-SDI
3G-SDI
Equalizer test
PLL test
Y channel
Data stream 1
198h
110h
Cb/Cr channel
Data stream 2
300h
200h
 This results in different colors from the familiar magenta/gray for
various 3G mapping structures
Data stream 1 carries the
Y samples and data
stream 2 carries the Cb/Cr
samples, so the
multiplexing is similar to
HD-SDI and the pattern
has the familiar colors.
Level A MS1 (1080p)
49
4/8/2015
In dual link, lines alternate
between the two links.
Therefore, in Level B, odd
lines have one word for
both Y and Cb/Cr samples,
and even lines have the
other word for both Y and
Cb/Cr samples.
Level B 1080p
3Gb/s SDI Interface
SDI Checkfield Test Pattern for 3G-SDI
 As it appears for other Level B formats:
4:4:4 YCbCr 10-bit
4:4:4 GBR 12-bit
4:2:2:4 YCbCrA 12-bit
 Verify with data mode (not video mode) of data display
50
4/8/2015
3Gb/s SDI Interface
SDI Checkfield Test Pattern for 3G-SDI
 For Level A, the SDI checkfield pattern would be illegal for mapping
structures 3 and 4, because unused bits would not be set to zero and
parity bit would not be correct
– Mapping structure 3: not possible to encode 300h for first word of
equalizer test (bit 9 would not be the complement of bit 8)
9
B8
8
7
Cr or R
6
5
4
Y or G
3
2
1
Cb or B
0
– Mapping structure 4: not possible to encode any 10 bit word other than
20Xh..23Xh
9
1

51
8
7
6
Reserved (000)
5
4
3
2
1
Sample data [11:6] or [5:0]
Best solution is to simply use Level A mapping structure 1
4/8/2015
3Gb/s SDI Interface
0
Video Session Display and SMPTE352M
52
4/8/2015
3Gb/s SDI Interface
 High Speed Data such as 3Gb/s can be monitored in a familiar way.
Using traditional waveform displays
 3Gb/s supports a variety of data mapping structures as defined in
SMPTE 425M.
– Most equipment primarily supporting mapping structure 1.
 Physical Layer Measurement using Eye and Jitter
 Pathological Test Signals for Level A and Level B
53
4/8/2015
3Gb/s SDI Interface