Linear Regression with Quantitative and Qualitative Predictors

Download Report

Transcript Linear Regression with Quantitative and Qualitative Predictors

Experiments with Bullet Proof Panels and
Various Bullet Types
R.A. Prosser, S.H. Cohen, and R.A. Segars (2000). "Heat as a Factor of Cloth Ballistic Panels by 0.22
Caliber Projectiles," Textile Research Journal, Vol. 70: pp. 709-723.
Data Description
• Response: V50 – The velocity at which approximately
half of a set of projectiles penetrate a fabric panel
(m/sec)
• Predictors:
 Number of layers in the panel (2,6,13,19,25,30,35,40)
 Bullet Type (Rounded, Sharp, FSP)
• Transformation of Response: Y* = (V50/100)2
• Two Models:
 Model 1: 3 Dummy Variables for Bullet Type, No Intercept
 Model 2: 2 Dummy Variables for Bullet Type, Intercept
Data/Models (t=3, bullet type, ni=9 layers per bullet type)
BulletType
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
#Layers
2
6
13
19
25
30
35
40
2
6
13
19
25
30
35
40
2
5
10
15
20
25
30
35
40
V50
213.1
295.4
410.8
421.8
520.0
534.9
571.1
618.4
266.1
328.9
406.3
469.7
550.5
597.7
620.0
671.5
236.8
306.6
391.4
435.6
484.9
524.6
587.7
617.5
669.0
Y*
4.541
8.726
16.876
17.792
27.040
28.612
32.616
38.242
7.081
10.818
16.508
22.062
30.305
35.725
38.440
45.091
5.607
9.400
15.319
18.975
23.513
27.521
34.539
38.131
44.756
Rounded
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sharp
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
Model 1 (No Intercept, 3 Dummy Variables): Yij  i 0  i1 X ij   ij
FSP
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
i  1,..., t  3;
j  1,..., ni  9
Model 2 (Intercept, 2 Dummy Variables): Yi   0   L Li   S Si   F Fi   LS Li Si   LF Li Fi   i
where: L  # of layers
1 if Bullet Type = Sharp
S 
0 otherwise
1 if Bullet Type = FSP
F 
0 otherwise
i  1,..., n
Model 1 – Individual Intercepts/Slopes
t  3 groups (Bullet Types)
1


1

0
X

0
0


0


 n1

 n1
 X1 j
 j 1

0

X'X  
0



0


0

X 11
0 0
X 18
0 0
0
1
X 21
0
1
X 28
0
0 0
0
0 0
ni observations per bullet type  n1  n2  8, n3  9 



0 0 

0 0 


0 0 
1 X 31 


1 X 39 
0 0
 10 
 
 11 
 
β   20 
  21 
 30 
 
 31 
n1
X
j 1
1j
0
0
0
2
1j
0
0
0
n1
X
j 1
n2
0
n2
n2
X
j 1
X
0
0
0
0
0
0
j 1
0
2
2j
0
n2
 X2 j
0
2j
j 1
n3
n3
X
j 1
3j

0



0




0



0


n3

X3 j 

j 1

n3

X 32j 


j 1
Y11 
 
 
Y18 
 
Y21 
Y 
 
Y28 
Y 
 31 
 
Y 
 39 
 n1

  Y1 j

 j 1

 n1

X
Y
 1 j 1 j 
 j 1

 n2

  Y2 j

 j 1

X'Y   n

2
 X Y 
2j 2j


j 1
n

 3

  Y3 j

 j 1

n
3


  X 3 jY3 j 
 j 1

Model 2 – Dummy Coding (Sharp (j=2), FSP (j=3))
S  1 if Bullet Type = Sharp, 0 otherwise
1


1

1
X

1
1


1


 n

 n
  Li
 i 1


 n2
X'X  

 n3

 n1  n2
  Li
 i  n1 1
 n

Li
 i  n
 1  n2 1
F  1 if Bullet Type = FSP, 0 otherwise n  n1  n2  n3  25
L1
0 0 0
L8
0 0 0
L9
1
0 L10
L16 1
0 L18
L17
0 1
0
L25
0 1
0
0 


0 

0 


0 
L19 


L27 
 0 
 
 1 
 
β S 
F 
  LS 


  LF 
n1  n2
n
 Li
n2
i 1
n1  n2
n
L
L
2
i
i 1
i  n1 1

n3
i
i  n1 1

i  n1  n2 1
Li
n1  n2
L
i  n1 1
2
i
n1  n2
L
i  n1 1
Li
n1  n2
n
i
L
n2
0
0
n3
i  n1 1
i
n

i  n1  n2 1
Li
n1  n2
L
i  n1 1
L
i  n1 1
n

i  n1  n2 1
0
n1  n2
2
i
i
n1  n2
L
0
i  n1 1
n
L2i
0

i  n1  n2 1
Li
0

L
 i
i  n1  n2 1


n
2
 Li 
i  n1  n2 1


0


n

L
 i
i  n1  n2 1



0


n
L2i 

i  n1  n2 1

n
2
i
Y1 
 
 
Y8 
 
Y9 
Y 
 
Y16 
Y 
 17 
 
Y 
 25 
 n

  Yi

 i 1

 n

L
Y
 i i

 i 1

 n1  n2

  Yi

i

n

1
 1

X ' Y   n

  Yi 
 i  n1  n2 1

 n1  n2


LiYi 
 i 

n 1
 1

n


  LiYi 
 i  n1  n2 1

Model 1 – Matrix Formulation
Y
4.541
8.726
16.876
17.792
27.040
28.612
32.616
38.242
7.081
10.818
16.508
22.062
30.305
35.725
38.440
45.091
5.607
9.400
15.319
18.975
23.513
27.521
34.539
38.131
44.756
X
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
6
13
19
25
30
35
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
6
13
19
25
30
35
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
5
10
15
20
25
30
35
40
X'X
8
170
0
0
0
0
170
4920
0
0
0
0
0
0
8
170
0
0
0
0
170
4920
0
0
0
0
0
0
9
182
0
0
0
0
182
5104
INV(X'X)
0.470363 -0.01625
0
0
0
0
-0.01625 0.000765
0
0
0
0
0
0
0.470363 -0.01625
0
0
0
0
-0.01625 0.000765
0
0
0
0
0
0
0.398377 -0.01421
0
0
0
0
-0.01421 0.000702
Y'Y
Beta'X'Y
SSE
18080.75 18052.51 28.24122
dfE
19
MSE
1.48638
V(beta-hat)
0.69914 -0.02416 0.00000 0.00000 0.00000 0.00000
-0.02416 0.00114 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.69914 -0.02416 0.00000 0.00000
0.00000 0.00000 -0.02416 0.00114 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.59214 -0.02111
0.00000 0.00000 0.00000 0.00000 -0.02111 0.00104
X'Y
174.44
4824.43
206.03
5691.26
217.76
5815.29
Beta-hat
3.643
0.855
4.412
1.004
4.142
0.992
Model 2 – Matrix Formulation
X
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X'X
2
6
13
19
25
30
35
40
2
6
13
19
25
30
35
40
2
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
2
6
13
19
25
30
35
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
5
10
15
20
25
30
35
40
25
522
8
9
170
182
INV(X'X)
0.470363
-0.01625
-0.47036
-0.47036
0.016252
0.016252
522
14944
170
182
4920
5104
-0.01625
0.000765
0.016252
0.016252
-0.00076
-0.00076
8
170
8
0
170
0
-0.47036
0.016252
0.940727
0.470363
-0.0325
-0.01625
Y'Y
Beta'X'Y
SSE
18080.75 18052.51 28.24122
9
182
0
9
0
182
170
4920
170
0
4920
0
-0.47036
0.016252
0.470363
0.86874
-0.01625
-0.03046
0.016252
-0.00076
-0.0325
-0.01625
0.00153
0.000765
dfE
19
MSE
1.48638
182
5104
0
182
0
5104
X'Y
598.23
16330.98
206.03
217.76
5691.26
5815.29
0.016252
-0.00076
-0.01625
-0.03046
0.000765
0.001467
Beta-hat
3.643
0.855
0.769
0.499
0.150
0.137
V(beta-hat)
0.69914 -0.02416 -0.69914 -0.69914 0.02416 0.02416
-0.02416 0.00114 0.02416 0.02416 -0.00114 -0.00114
-0.69914 0.02416 1.39828 0.69914 -0.04831 -0.02416
-0.69914 0.02416 0.69914 1.29128 -0.02416 -0.04527
0.02416 -0.00114 -0.04831 -0.02416 0.00227 0.00114
0.02416 -0.00114 -0.02416 -0.04527 0.00114 0.00218
Equations Relating Y to #Layers by Bullet Type
Model 1 (Separate Intercepts and Slopes by Bullet Type):
^
^
^
Rounded (i  1) : Y 1 j   10   11 X 1 j  3.643  0.855 X 1 j
^
^
j  1,...,8
^
Sharp (i  2) : Y 2 j   20   21 X 2 j  4.412  1.004 X 2 j
^
^
^
FSP (i  3) : Y 3 j   30   31 X 3 j  4.142  0.992 X 1 j
j  1,...,8
j  1,...,9
Model 2: Dummy Coding for Sharp and FSP, with Rounded as "Baseline Category"
^
^
^
Rounded ( S  0, F  0) : Y i =  0 +  L Li  3.643  0.855 Li
^
^
^
^
i  1,...,8
^
Sharp ( S  1, F  0) : Y i =  0 +  L Li +  S (1)   LS Li (1) 
 3.643  0.769    0.855  0.150  Li  4.412  1.005Li
^
^
^
^
i  9,...,16
^
FSP ( S  0, F  1) : Y i =  0 +  L Li +  F (1)   LF Li (1) 
 3.643  0.499    0.855  0.137  Li  4.142  0.992 Li
i  17,..., 25
Note: Both models give the same lines (ignore rounding for Sharp). Same lines would
be obtained if Baseline Category had been Sharp or FSP.
Tests of Hypotheses
• Equal Slopes: Allowing for Differences in Bullet Type
Intercepts, is the “Layer Effect” the same for each
Bullet Type?
• Equal Intercepts (Only Makes sense if all slopes are
equal): Controlling for # of Layers, are the Bullet Type
Effects all Equal?
• Equal Variances: Do the error terms of the t = 3
regressions have the same variance?
Testing Equality of Slopes
Model 1: E Yij   i 0  i1 X ij
i  1, 2,3;
Reduced Model 1: E Yij   i 0  1 X ij
j  1,..., ni
i  1, 2,3;
H 0 : 11   21  31  1
j  1,..., ni
Model 2: E Yi    0   L Li   S Si   F Fi   LS Li Si   LF Li Fi
i  1,..., 25
H 0 :  LS   LF  0
Reduced Model 2: E Yi    0   L Li   S Si   F Fi
Complete Models (Both 1 and 2)
Y'Y
Beta'X'Y
SSE
18080.75 18052.51 28.24122
Beta-hat
3.643
0.855
0.769
0.499
0.150
0.137
Model 2
TS : Fobs
dfE
19
Reduced Models (Both 1 and 2)
MSE
1.48638
 46.44  28.24 
 21  19  9.10


 6.11
1.49
 28.24 
 19 
Conclude Slopes are not all equal
Y'Y
Beta'X'Y
SSE
18080.75 18034.32 46.43796
RR : Fobs  F .05; 2,19   3.522
dfE
21
MSE
2.211332
Beta-hat
1.588
0.951
3.948
3.368
Model 2
V50^2 versus Number of Panels
by Bullet Type - Full Model (HA)
V50^2 versus Number of Panels by
Bullet Type - Reduced Model (H0)
60
60
50
50
40
40
Sharp(F)
30
FSP(F)
20
Sharp(R)
30
FSP(R)
Round
Round
Sharp
Sharp
FSP
10
Round(R)
V50^2
V50^2
Round(F)
20
FSP
10
0
0
0
10
20
30
Number of Panels
40
50
0
10
20
30
Number of Panels
40
50
Testing Equality of Intercepts – Assuming Equal Slopes
Note: Does not apply to this problem, just providing formulas.
Model 1: E Yij   i 0  1 X ij
i  1, 2,3;
Reduced Model 1: E Yij    0  1 X ij
j  1,..., ni
i  1, 2,3;
Model 2: E Yi    0   L Li   S Si   F Fi
H 0 : 10   20   30   0
j  1,..., ni
i  1,..., 25
H 0 : S  F  0
Reduced Model 2: E Yi    0   L Li
TS : Fobs
 SSE ( R )  SSE ( F ) 


n

2

n

4
     

 SSE ( F ) 
 n 4 
 

RR : Fobs  F  ; 2, n  4 
where SSE  Residual Sum of Squares
Bartlett’s Test of Equal Variances
Based on Model 1 (Similar for Model 2), Obtain Sample Variance for Each Group (t  3) :
^


SSEi    Yij  Y ij 

j 1 
ni
t
t
i 1
i 1
2
si2 
SSE   SSEi   i si2
SSEi
i  1,..., t
i
MSE 
1  t 1
1 
C  1




i


3  t  1  i 1

SSE


 i  ni  2 for these simple regressions
SSE
n  2t
t
1

B    ln  MSE    i ln  si2  
C
i 1

Reject H 0 :  2 1 j    2  2 j   ...   2  tj  if B   2  ; t  1
i
1
SSE(i)
15.1594
df(i)
6
s^2(i)
2.5266
df(i)*ln(s^2(i)) 5.5612
1/df(i)
0.1667
C
B
X2(.05;3-1)
P-Value
1.0706
1.9199
5.9915
0.3829
2
7.0871
6
1.1812
0.9991
0.1667
3
5.9948
7
0.8564
-1.0851
0.1429
Total
28.2412
19
1.4864
7.5305
0.0526
MSE
Residuals
Round
Sharp
-0.8115 0.6603
-0.0453 0.3797
2.1214 -0.9601
-2.0909 -1.4321
2.0295
0.7852
-0.6722 1.1832
-0.9419 -1.1229
0.4110
0.5067
FSP
-0.5181
0.2999
1.2606
-0.0423
-0.4625
-1.4131
0.6473
-0.7195
0.9477