Transcript a n (x)
191
4-4 Undetermined Coefficients –
Superposition Approach
This section introduces some method of “guessing” the particular
solution.
4-4-1 方法適用條件
(1)
(2)
Suitable for linear and constant coefficient DE.
an y ( n ) x an1 y ( n1) x
a1 y( x ) a0 y x g x
(3) g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), ………contain
finite number of terms.
192
4-4-2 方法
把握一個原則:
g(x) 長什麼樣子,particular solution 就應該是什麼樣子.
記熟下一頁的規則
(計算時要把 A, B, C, … 這些 unknowns 解出來)
193
Trial Particular Solutions
(from text page 143)
g(x)
Form of yp
1 (any constant)
A
5x + 7
Ax + B
3x2 – 2
Ax2 + Bx + C
x3 – x + 1
Ax3 + Bx2 + Cx + E
sin4x
Acos4x + Bsin4x
cos4x
Acos4x + Bsin4x
e5x
Ae5x
(9x – 2)e5x
(Ax + B)e5x
x2e5x
(Ax2 + Bx + C)e5x
e3xsin4x
Ae3xcos4x + Be3xsin4x
5x2sin4x
(Ax2 + Bx + C)cos4x + (Ex2 + Fx + G)sin4x
xe3xcos4x
(Ax + B)e3xcos4x + (Cx + E)e3xsin4x
It comes from the “form rule”. See page 198.
194
g x e 2 x xe3 x
yp = ?
g x cos x x 2 sin 2 x
yp = ?
g x cosh 2 x
yp = ?
195
4-4-3 Examples
Example 2
y y y 2sin 3x
(text page 141)
Step 1: find the solution of the associated homogeneous equation
Guess
Step 2: particular solution
y p A cos3x B sin 3x
yp 3 A sin 3x 3B cos3x
yp 9 A cos3x 9 B sin 3x
yp yp y p (8 A 3B)cos3x (3 A 8B)sin 3x 2sin 3x
8 A 3B 0
3 A 8B 2
Step 3: General solution:
A = 6/73, B = 16/73
y p 6 cos3 x 16 sin 3 x
73
73
y e x / 2 c1 cos 3 x c2 sin 3 x 6 cos3x 16 sin 3x
2
2 73
73
Example 3
y 2 y 3 y 4 x 5 6 xe
2x
(text page 142)
196
Step 1: Find the solution of
y 2 y 3 y 0.
yc c1e3 x c2e x
Step 2: Particular solution
y 2 y 3 y 4 x 5
guess
y p1 Ax B
yp1 A
yp1 0
3 Ax 2 A 3B 4 x 5
A 4 , B 23
3
9
y p1 4 x 23
3
9
y 2 y 3 y 6 xe2 x
guess
y p2 Cxe2 x Ee2 x
yp2 2Cxe 2 x Ce 2 x 2 Ee 2 x
yp2 4Cxe 2 x 4Ce 2 x 4 Ee 2 x
3Cxe 2 x 2C 3E e 2 x 6 xe 2 x
C 2, E 4
3
y p2 (2 x 4 )e 2 x
3
Particular solution
y p y p1 y p2 4 x 23 (2 x 4 )e x
3
9
3
Step 3: General solution
y yc y p
y c1e3 x c2e x 4 x 23 (2 x 4 )e 2 x
3
9
3
197
4-4-4 方法的解釋
Form Rule: yp should be a linear combination of g(x), g'(x),
g'' (x), g'''(x), g(4)(x), g(5)(x), …………….
Why? 如此一來,在比較係數時才不會出現多餘的項
198
When g(x) =
199
xn
x n x n1 x n2 x n3
y p An x n An1 x n1 An2 x n2
When g(x) = cos kx
cos kx sin kx
y p A1 cos kx A2 sin kx
When g(x) = exp(kx)
e kx
y p A exp(kx)
1 0
A0
When g(x) =
200
xnexp(kx)
g x nx n1e kx kx n e kx
g x n(n 1) x n2e kx 2nkx n1e kx k 2 x ne kx
g x n(n 1)(n 2) x n3e kx 3kn(n 1) x n2e kx
3k 2 nx n1e kx k 3 x ne kx
:
:
會發現 g(x) 不管多少次微分,永遠只出現
x nekx , x n1ekx , x n2ekx , x n3ekx ,
y p cn x nekx cn1 x n1ekx cn2 x n2e kx
, ekx
c0e kx
201
4-4-5 Glitch of the method:
Example 4
y 5 y 4 y 8e x
(text page 142)
Particular solution guessed by Form Rule:
y p Ae x
yp 5 yp 4 y p Ae x 5 Ae x 4 Ae x 8e x
0 8e x
Why?
(no solution)
202
Glitch condition 1: The particular solution we guess belongs to the
complementary function.
For Example 4
y 5 y 4 y 8e x
x
4x
Complementary function yc c1e c2e
Ae x yc
解決方法:再乘一個 x
y p Axe
x
yp Axe x Ae x
yp Axe x 2 Ae x
yp 5 yp 4 y p 3 Ae x 8e x
y p 8 xe x
3
y c1e x c2e 4 x 8 xe x
3
A 8/ 3
Example 7
y 2 y y e x
203
(text page 144)
yc c1e x c2 xe x
From Form Rule, the particular solution is Aex
Ae x yc
Axe x yc
y p Ax 2e x
如果乘一個 x 不夠,則再乘一個 x
yp ( Ax 2 2 Ax)e x
yp ( Ax 2 4 Ax 2 A)e x
yp 2 yp y p 2 Ae x e x
y p x 2e x / 2
y c1e x c2 xe x x 2e x / 2
A 1/ 2
Example 8 (text page 145)
y y 4 x 10sin x
204
y 0
Step 1
yc c1 cos x c2 sin x
Step 2
y p Ax B Cx sin x Ex cos x
y 2
注意: sinx, cosx 都要
乘上 x
y p 4 x 5 x cos x
Step 3
y c1 cos x c2 sin x 4 x 5 x cos x
Step 4
Solving c1 and c2 by initial conditions
(最後才解 IVP)
c1 9
y c1 4 5 0
y c1 sin x c2 cos x 4 5cos x 5 x sin x
c2 7
y c 9 2
2
y 9 cos x 7sin x 4 x 5 x cos x
205
Example 11 (text page 146)
y (4) y 1 x 2e x
yc c1 c2 x c3 x 2 c4e x
From Form Rule
y p A Bx 2e x Cxe x Ee x
修正
yp 只要有一部分和 yc 相
同就作修正
y p Ax3 Bx3e x Cx 2e x Exe x
乘上 x3
2 x
x
x
If we choose y p A Bx e Cxe Ee
乘上 x
x
x
2 x
y (4)
y
2
Bxe
(6
B
C
)
e
1
x
e
p
( p)
沒有 1, x2ex 兩項,不能比較係數,無解
206
If we choose y p Ax3 Bx 2e x Cxe x Ee x
x
x
2 x
y (4)
y
6
A
2
Bxe
(6
B
C
)
e
1
x
e
p
( p)
沒有 x2ex 這一項,不能比較係數,無解
If we choose y p Ax3 Bx3e x Cx 2e x Exe x
y (4)
p y( p )
6 A 3Bx 2e x 18 B 2C xe x (18 B 6C E )e x
1 x 2e x
A = 1/6, B = 1/3, C = 3, E = 12
y p 1 x3 1 x3e x 3x 2e x 12 xe x
6
3
y c1 c2 x c3 x 2 c4e x 1 x 3 1 x 3e x 3x 2e x 12 xe x
6
3
207
Glitch condition 2: g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), ……………
contain infinite number of terms.
If g(x) = ln x
ln x
1
1
1
2 3
x
x
x
If g(x) = exp(x2)
g x 2 xe x
2
g x (4 x 2)e
3
x2
g x (8 x 12 x)e
2
:
:
x2
208
4-4-6 本節需要注意的地方
(1) 記住 Table 4.1 的 particular solution 的假設方法
(其實和 “form rule” 有相密切的關聯)
(2) 注意 “glitch condition”
另外,“同一類” 的 term 要乘上相同的東西 (參考 Example
11)
(3) 所以要先算 complementary function,再算 particular solution
(4) 同樣的方法,也可以用在 1st order 的情形
(5) 本方法只適用於 linear, constant coefficient DE
209
4-5 Undetermined Coefficients –
Annihilator Approach
For a linear DE:
an y ( n ) x an1 y ( n1) x
a1 y( x ) a0 y g x
Annihilator Operator:
能夠「殲滅」 g(x) 的 operator
4-5-1 方法適用條件
(1) Linear, (2) Constant coefficients
(3) g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), ………contain
finite number of terms.
210
4-5-2 Find the Annihilator
Example 1: (text page 150)
g x 1 5 x 2 8 x3
annihilator: D4
g x e 3x
annihilator: D + 3
k
d
Dk g x k g x
dx
d g x 3g x 0
dx
g x 4e 2 x 10 xe 2 x
211
annihilator: (D − 2)2
(D − 2)2 = D2 − 4D + 4
d 2 g x 4 d g x 4g x 0
dx
dx 2
註:當 coefficient 為 constants 時,function of D 的計算方式
和 function of x 的計算方式相同
(x − 2)2 = x2 − 4x + 4
(D − 2)2 = D2 − 4D + 4
212
General rule 1:
If
g x an x n an1x n1
then the annihilator is D
a0 e x
n 1
注意: annihilator 和 a0, a1, …… , an 無關
只和 , n 有關
213
General rule 2:
n
n1
If g x an x an1x
a0 e x b1 cos x b2 sin x
b1 0 or b2 0
2
2
2
then the annihilator is D 2 D
Example 2: (text page 151)
annihilator
Example 5: (text page 154)
annihilator
Example 6: (text page 155)
annihilator
n 1
g x 5e x cos 2 x 9e x sin 2 x
D2 2D 5
g x x cos x cos x
2
D 1
g x 10e 2 x cos x
2
D2 4D 5
214
General rule 3:
If g(x) = g1(x) + g2(x) + …… + gk(x)
Lh[gh(x)] = 0 but Lh[gm(x)] 0 if m h,
then the annihilator of g(x) is the product of Lh (h = 1 ~ k)
Lk Lk 1
Proof:
Lk Lk 1
Lk Lk 1
L2 L1
L3 L2 L1 g1 g 2 g 3
L3 L2 L1 g1 Lk Lk 1
gk
L3 L2 L1 g 2
Lk Lk 1
L3 L2 L1 g3
Lk Lk 1
Lk Lk 1
L3 L2 L1g1 Lk Lk 1
L3 L2 L1g1 0
Lk Lk 1
L3 L2 L1g2 Lk Lk 1
L3 L1 L2 g2 0
L3 L2 L1 g k
(因為 L1, L2 為 linear DE with constant coefficient,
L1L2 = L2L1 )
215
Similarly,
Lk Lk 1
L4 L3 L2 L1g3 Lk Lk 1
Lk Lk 1
:
:
L4 L3 L2 L1g3 Lk 1
L4 L2 L1 L3 g3 0
L4 L3 L2 L1 Lk g k 0
Therefore,
Lk Lk 1
L3 L2 L1 g1 g 2 g 3
000
0
0
gk
216
Example 7 (text page 154)
g x 5 x 2 6 x 4 x 2e 2 x 3e5 x
annihilator: D − 5
annihilator: D3
annihilator: (D − 2)3
annihilator of g(x): D3 (D − 2)3 (D − 5)
217
4-5-3 Using the Annihilator to Find the Particular Solution
Step 2-1 Find the annihilator L1 of g(x)
Step 2-2 如果原來的 linear & constant coefficient DE 是
L y g x
那麼將 DE 變成如下的型態:
L1 L y L1 g x 0
(homogeneous linear & constant coefficient DE)
(n)
( n 1)
x
註: If an y x an1 y
n
n1
then L an D an1D
a1 y( x ) a0 y g x
a1D a0
218
Step 2-3 Use the method in Section 4-3 to find the solution of
L1 L y 0
Step 2-4 Find the particular solution.
The particular solution yp is a solution of
L1 L y 0
but not a solution of
L y 0
(Proof): Since L y p g ( x) , if g(x) 0, L y p should be nonzero.
Moreover, L1 L y p L1 g x 0.
Step 2-5 Solve the unknowns
219
solutions of
L1 L y 0
particular solution yp
solutions of
L y 0
particular solution yp solutions of L1 L y 0
solutions of L y 0
本節核心概念
4-5-4 Examples
220
Example 3 (text page 152)
y 3 y 2 y 4 x 2
Step 1: Complementary function
(solution of the associated homogeneous function)
yc c1e x c2e2 x
Step 2-1: Annihilation: D3
L1 L y L1 g x 0
Step 2-2:
D3 ( D2 3D 2) y 0
Step 2-3: auxiliary function m3 (m2 3m 2) 0
roots: m1 = m2 = m3 = 0, m4 = −1, m5 = −2
移除和 complementary
Solution for L1 L y 0 :
function 相同的部分
2
x
2 x
y d1 d 2 x d3 x d 4e d5e
Step 2-4: particular solution y p A Bx Cx
Step 2-5:
2
yp B 2Cx
yp 2C
yp 3 yp 2 y 2Cx 2 (2 B 6C ) x (2 A 3B 2C ) 4 x 2
2C 4
2 B 6C 0
2 A 3B 2C 0
C2
B 6
A7
y p 7 6x 2x2
x
2 x
2
Step 3: y yc y p c1e c2e 7 6 x 2 x
221
222
Example 4 (text page 153)
y 3 y 8e3 x 4sin x
Step 1: Complementary function
From auxiliary function, m2 − 3m = 0, roots: 0, 3
yc c1 c2e3 x
Step 2-1: Find the annihilator
D−3
annihilate 8e3 x
(D2 + 1)
annihilate 4sin x but cannot annihilate 8e3 x
but cannot annihilate 4sin x
(D − 3)(D2 + 1) is the annihilator of 8e3 x 4sin x
Step 2-2:
D 3 ( D2 1) D2 3D y 0
2
2
Step 2-3: auxiliary function: m 3 (m 1) m 3m
m m 3 (m 2 1) 0
223
易犯錯的地方
2
solution of
D 3 ( D2 1) D2 3D y 0 :
y d1 d 2e3 x d3 xe3 x d 4 cos x d5 sin x
Step 2-4: particular solution
y p d3 xe3 x d 4 cos x d5 sin x
代回原式
並比較係數
8 xe3 x 6 cos x 2 sin x
y
Step 2-5:
p
3
5
5
Step 3: general solution y c1 c2e3 x 8 xe3 x 6 cos x 2 sin x
3
5
5
4-5-5 本節要注意的地方
(1) 所以要先算 complementary function,再算 particular solution
(2) 若有兩個以上的 annihilator,選其中較簡單的即可
(3) 計算 auxiliary function 時有時容易犯錯
(4) L1 L y 0 的解和 L y 0 的解不一樣。
(5) 這方法,只適用於 constant coefficient linear DE
(因為,還需借助 auxiliary function)
224
225
The thing that can be done by the annihilator approach can always
be done by the “guessing” method in Section 4-4, too.
226
4-6 Variation of Parameters
4-6-1 方法的限制
The method can solve the particular solution for any linear DE
(1) May not have constant coefficients
(2) g(x) may not be of the special forms
an x y ( n ) x an1 x y ( n1) x
a1 x y( x ) a0 x y g x
227
4-6-2 Case of the 2nd order linear DE
a2 x y( x) a1 x y( x) a0 x y g x
associated homogeneous equation: an x y( x) a1 x y( x) a0 x y 0
Suppose that the solution of the associated homogeneous equation is
c1 y1 ( x) c2 y2 ( x)
Then the particular solution is assumed as:
y p u1 ( x) y1 ( x) u2 ( x) y2 ( x)
(方法的基本精神)
y p u1 ( x) y1 ( x) u2 ( x) y2 ( x)
代入原式後,總是可以簡化
228
yp u1 y1 u1 y1 u2 y2 u2 y2
yp u1y1 2u1 y1 u1 y1 u2 y2 2u2 y2 u2 y2
代入 y( x) P x y( x) Q x y f x
a0 ( x)
a1 ( x)
P x
, Q x
,
a2 ( x)
a2 ( x)
zero
g ( x)
f x
a2 ( x )
zero
yp P x yp Q x y p u1 y1 Py1 Qy1 u2 y2 Py2 Qy2 y1u1
2u1 y1 y2u2 2u2 y2 P y1u1 y2u2
yp P x yp Q x y p f x ,
y p u1 y1 u2 y2
簡化
d y u y u P y u y u yu y u f x
2 2
1 1
2 2
1 1
2 2
dx 1 1
進一步簡化:
假設 y1u1 y2u2 0
y1u1 y2 u2 f x
聯立方程式
y1u1 y2u2 0
y1u1 y2u2 f x
229
y1u1 y2u2 0
y1u1 y2u2 f x
y1
where W
y1
y2
y2
y2 f x
W1
u1
W
W
u2
W1
W2 y1 f x
W
W
0
f ( x)
y2
y2
y1
W2
y1
| |: determinant
y p x u1 x y1 x u2 x y2 x
可以和 1st order case (page 58) 相比較
u1 u1 x dx
u2 u2 x dx
0
f ( x)
230
4-6-3 Process for the
2nd
231
Order Case
Step 2-1 變成 standard form
y( x) P x y( x) Q x y f x
Step 2-2
y1
W
y1
y2
y2
W1
W
W1
u2
0
f ( x)
y2
y2
W2
W
Step 2-3
u1
Step 2-4
u1 u1 x dx
Step 2-5
y p x u1 x y1 x u2 x y2 x
u2 u2 x dx
y1
W2
y1
0
f ( x)
232
4-6-4 Examples
Example 1 (text page 159)
y 4 y 4 y ( x 1)e2 x
Step 1: solution of y 4 y 4 y 0 :
yc c1e2 x c2 xe2 x
Step 2-2: y p u1 y1 u2 y2 ,
W
W2
e2 x
2e
2x
xe2 x
2 xe e
2x
2x
e2 x
0
2e2 x
( x 1)e2 x
Step 2-3: u1
y1 e2 x ,
e
4x
W1
y2 xe2 x
0
xe2 x
( x 1)e2 x
2 xe2 x e2 x
( x 1)e4 x
W1
x2 x
W
u2
W2
x 1
W
( x 1) xe4 x
Step 2-4: u1 u1dx ( x x)dx 1 x 3 1 x 2 c1
3
2
u2 u2 dx ( x 1)dx 1 x 2 x c2
2
2
Step 2-5: y p ( 1 x3 1 x 2 )e 2 x ( 1 x 2 x) xe 2 x ( 1 x 3 1 x 2 )e2 x
3
2
2
6
2
Step 3:
y c1e 2 x c2 xe 2 x ( 1 x3 1 x 2 )e 2 x
6
2
233
4 y 36 y csc3x
Example 2 (text page 159)
Step 1: solution of
4 y 36 y 0 :
Step 2-1: standard form:
Step 2-2:
W
cos3 x
yc c1 cos3x c2 sin 3x
y 9 y csc3x / 4
sin 3 x
3sin 3 x 3cos3 x
cos3 x
234
3
f ( x) csc3 x / 4
0
sin 3 x
W1 1
1/ 4
csc3 x 3cos3 x
4
0
1 cos3 x
sin 3 x 1 csc3 x 4 sin 3 x
4
W1
W2 1 cos3x
1
u
u
Step 2-3: 1
2
12
W
W 12 sin 3x
x
Step 2-4: u1 12
u2 1 ln sin 3 x
36
1 cos3 x
(未完待續)
注意
dx
12 sin 3 x
W2
算法
x
1
Step 2-5: y p 12 cos3 x 36 sin 3 x ln sin 3 x
Step 3:
235
y yc y p c1 cos3x c2 sin 3x x cos3x 1 sin 3x ln sin 3x
12
36
Note: 課本 Interval (0, /6) 改為(0, /3)
Example 3 (text page 160)
y y 1/ x
f ( x) 1/ x
Note:
ex
x dx
沒有 analytic 的解
et
所以直接表示成
dt
x0 t
x
(複習 page 45)
236
4-6-5 Case of the Higher Order Linear DE
an x y ( n ) x an1 x y ( n1) x
a1 x y( x ) a0 x y g x
Solution of the associated homogeneous equation:
yc c1 y1 ( x) c2 y2 ( x) c3 y3 ( x)
cn yn ( x)
The particular solution is assumed as:
y p u1 ( x) y1 ( x) u2 ( x) y2 ( x) u3 ( x) y3 ( x)
uk ( x)
Wk
W
uk ( x) uk ( x)dx
u n ( x ) yn ( x )
237
uk ( x)
Wk
W
W
y1
y1
y2
y2
y3
y3
yn
yn
y1
y2
y3
yn
y1( n1)
y2( n1)
y3( n1)
yn( n1)
y1
y1
y2
y2
yk 1
yk 1
0
y1( n2)
y2( n2)
y1( n1)
y2( n1)
0
yk 1
yk 1
yn
yn
yk( n12)
0
yk( n1 2)
yn( n2)
yk( n11)
f ( x)
yk( n11)
yn( n1)
Wk
f x g x / an x
Wk: replace the kth column of W by
0
0
0
f ( x )
238
g x
f x
an x
For example, when n = 3,
0
W1
0
y2
y2
y3
y3
f ( x)
y2
y3
y1
0
W2 y1
0
y1 f ( x)
y3
y3
y3
y1 y2
W3 y1 y2
y1 y2
0
0
f ( x)
239
4-6-6 Process of the Higher Order Case
Step 2-1 變成 standard form
an1 x ( n1)
(n)
y x
y
x
an x
a1 x
a0 x
g x
y ( x)
y
an x
an x
an x
Step 2-2 Calculate W, W1, W2, …., Wn (see page 237)
Step 2-3 u1
W1
W
u2
Step 2-4 u1 u1 x dx
Step 2-5
W2
W
……… un
Wn
W
u2 u2 x dx ……. un un x dx
y p x u1 x y1 x u2 x y2 x
un x yn x
240
4-6-7 本節需注意的地方
(1)養成先解 associated homogeneous equation 的習慣
(2) 記熟幾個重要公式
(3) 這裡 | | 指的是 determinant
(4) 算出 u1(x) 和 u2(x) 後別忘了作積分
特別要小心
(5) f(x) = g(x)/an(x) (和 1st order 的情形一樣,使用 standard form)
(6) 計算 u1'(x) 和 u2'(x) 的積分時,+ c 可忽略
因為 我們的目的是算particular solution yp
yp 是任何一個能滿足原式的解
(7) 這方法解的範圍,不包含 an(x) = 0 的地方
241
4-7 Cauchy-Euler Equation
4-7-1 解法限制條件
an x n y ( n ) x an1 x n1 y ( n1) x
not constant coefficients
a1 xy( x ) a0 y g x
k
k
but the coefficients of y(k)(x) have the form of ak x
ak is some constant
associated homogeneous
equation
an x n y ( n ) x an1 x n1 y ( n1) x
a1 xy( x) a0 y 0
particular solution
242
4-7-2 解法
Associated homogeneous equation of the Cauchy-Euler equation
an x n y ( n ) x an1 x n1 y ( n1) x
a1xy( x ) a0 y 0
Guess the solution as y(x) = xm , then
m n 1 x mn
an1 x n1m(m 1)(m 2)
m n 2 x mn1
an2 x n2 m(m 1)(m 2)
m n 3 x mn 2
an x n m(m 1)(m 2)
a1 xmx m1
a0 x m 0
an m(m 1)(m 2)
an1m(m 1)(m 2)
an2 m(m 1)(m 2)
m n 1
m n 2
m n 3
243
auxiliary function
比較: 和 constant coefficient
時有何不同?
a1m
a0 0
k
m!
d
規則:把 x
變成
(m k )!
dx k
k
4-7-3 For the
2nd
244
Order Case
a2 x 2 y x a1 xy( x) a0 y 0
auxiliary function:
a2m m 1 a1m a0 0
roots
m1
a2 a1
a2 m2 a1 a2 m a0 0
a1 a2 4a2a0
a2 a1
m2
2a2
2
a1 a2 2 4a2a0
[Case 1]: m1 m2 and m1, m2 are real
two independent solution of the homogeneous part:
x m1 and x m2
yc c1 x m1 c2 x m2
2a2
245
[Case 2]: m1 = m2
Use the method of reduction of order
y1 x m1
a1
dx
a2 x
P ( x ) dx
e
e
y2 x y1 x 2
dx x m1 2 m1 dx
y1 x
x
a0
a1
y
(
x
)
y 0,
Note 1: 原式
2
a2 x
a2 x
a2 a1
Note 2: 此時 m1 m2
2a2
y x
a1
P x
a2 x
246
y2 x x
1
a
1
a2
m1
e
x
x m1 x
a1
dx
a2 x
2 m1
a1
a2
x
dx x
a1 a2
a2
m1
e
a1
ln x
a2
x
2 m1
dx x
m1
a1
a2
x
dx
2 m1
x
dx x m1 x 1dx x m1 ln x
If y2(x) is a solution of a homogeneous DE
then c y2(x) is also a solution of the homogeneous DE
m
If we constrain that x > 0, then y2 x 1 ln x
yc c1 x m1 c2 x m1 ln x
247
[Case 3]: m1 m2 and m1, m2 are the form of
m2 j
m1 j
two independent solution of the homogeneous part:
x j and
x j
yc C1 x j C2 x j
x j (elnx ) j e( j ) ln x e ln x e j ln x
x cos( ln x) j sin( ln x)
j
x
x
cos( ln x) j sin( ln x)
同理
yc x [(C1 C2 )cos ln x (C1 C2 )sin ln x ]
yc x [c1 cos ln x c2 sin ln x ]
248
Example 1 (text page 163)
x 2 y x 2 xy( x) 4 y 0
Example 2 (text page 164)
4 x 2 y x 8 xy( x) y 0
249
Example 3 (text page 165)
4 x y x 17 y 0
2
y 1 1
y 1 1
2
250
4-7-4 For the Higher Order Case
Process:
auxiliary function
roots
n independent solutions
Step 1-1
Step 1-2
solution of the nth order associated
Step 1-3
homogeneous equation
251
(1) 若 auxiliary function 在 m0 的地方只有一個根
xm0
是 associated homogeneous equation 的其中一個解
(2) 若 auxiliary function 在 m0 的地方有 k 個重根
x m0 , x m0 ln x , x m0 (ln x) 2 ,
, x m0 (ln x) k 1
皆為 associated homogeneous equation 的解
252
(3) 若 auxiliary function 在 + j 和 − j 的地方各有一個根
(未出現重根)
x cos ln x , x sin ln x
是 associated homogeneous equation 的其中二個解
(4) 若 auxiliary function 在 + j 和 − j 的地方皆有 k 個重根
x cos ln x , x cos ln x ln x, x cos ln x (ln x) 2 ,
,
x cos ln x (ln x) k 1
x sin ln x ,
x sin ln x ln x , x sin ln x (ln x) 2 ,
x sin ln x (ln x) k 1
是 associated homogeneous equation 的其中2k 個解
,
Example 4 (text page 166)
x3 y x 5 x 2 y x 7 xy( x) 8 y 0
auxiliary function
m m 1 m 2 5m m 1 7m 8 0
m3 3m2 2m 5m2 5m 7m 8 0
m3 2 m 2 4 m 8 0
m 2 m2 4 0
253
254
4-7-5 Nonhomogeneous Case
To solve the nonhomogeneous Cauchy-Euler equation:
Method 1: (See Example 5)
(1) Find the complementary function (general solutions of the associated
homogeneous equation) from the rules on pages 244-247, 251-252.
(2) Use the method in Sec.4-6 (Variation of Parameters) to find the
particular solution.
(3) Solution = complementary function + particular solution
Method 2: See Example 6,重要
Set x = et, t = ln x
255
Example 5 (text page 166, illustration for method 1)
x 2 y x 3xy( x) 3 y 2 x 4e x
Step 1 solution of the associated homogeneous equation
auxiliary function
m m 1 3m 3 0
m2 3
yc c1 x c2 x3
Step 2-2 Particular solution W
W1
Step 2-3
0
x3
2 x 2e x
3x 2
u1
x
x3
1 3x 2
2 x3
W2
2 x e
W1
x 2e x
W
m1 1
m 2 4m 3 0
5 x
u2
x
0
1 2 x 2e x
W2
ex
W
2 x 3e x
Step 2-4 u1 u1dx x e 2 xe 2e
2 x
x
256
x
u2 u2 dx e x
Step 2-5 y p u1 y1 u2 y2 2 x 2e x 2 xe x
Step 3
y c1 x c2 x3 2 x 2e x 2 xe x
Example 6 (text page 167, illustration for method 2)
x 2 y x xy( x) y ln x
Set x = et, t = ln x
dy dt dy 1 dy
dx dx dt x dt
(chain rule)
d 2 y d dy dt d dy 1 d 1 dy
2
dx
dx dx dx dt dx x dt x dt
1 d 2 y 1 d 1 dy 1 d 2 y dy
2 2
2 2
x dt
x dt x dt x dt
dt
Therefore, the original equation is changed into
d 2 y t 2 d y (t ) y (t ) t
dt
dt 2
257
258
d 2 y t 2 d y (t ) y (t ) t
dt
dt 2
y (t ) c1et c2tet t 2
y( x) c1 x c2 x ln x ln x 2
(別忘了 t = ln x 要代回來)
Note 1: 以此類推
dk y 1
k Dt k 1
k
dx
x
Dt 1 Dt y
Dt means
d
dt
Note 2: 簡化計算的小技巧:結合兩種解 nonhomogeneous CauchyEuler equation 的長處
259
4-7-6 本節要注意的地方
(1) 本節公式記憶的方法:
把 Section 4-3 的 ex 改成 x,x 改成 ln(x)
把 auxiliary function 的 mn 改成 m(m 1)(m 2)
(2) 如何解 particular solution?
Variation of Parameters 的方法
(3) 解的範圍將不包括 x = 0 的地方 (Why?)
m n 1
260
還有很多 linear DE 沒有辦法解,怎麼辦
(1) numerical approach (Section 4-9-3)
(2) using special function (Chap. 6)
(3) Laplace transform and Fourier transform (Chaps. 7, 11, 14)
(4) 查表 (table lookup)
261
(1) 即使用了 Section 4-7 的方法,大部分的 DE還是沒有辦法解
(2) 所幸,自然界真的有不少的例子是 linear DE
甚至是 constant coefficient linear DE
262
Exercise for practice
Section 4-4
5, 6, 14, 17, 18, 24, 26, 32, 33, 39, 42
Section 4-5
2, 7, 13, 18, 31, 45, 62, 69, 70
Section 4-6
4, 5, 8, 13, 14, 17, 18, 21, 24, 25, 30
Section 4-7
11, 17, 18, 20, 21, 24, 32, 34, 36, 37, 42
Review 4
2, 19, 20, 23, 25, 26, 27, 28, 30, 31, 33, 38