Transcript a n (x)
191 4-4 Undetermined Coefficients – Superposition Approach This section introduces some method of “guessing” the particular solution. 4-4-1 方法適用條件 (1) (2) Suitable for linear and constant coefficient DE. an y ( n ) x an1 y ( n1) x a1 y( x ) a0 y x g x (3) g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), ………contain finite number of terms. 192 4-4-2 方法 把握一個原則: g(x) 長什麼樣子,particular solution 就應該是什麼樣子. 記熟下一頁的規則 (計算時要把 A, B, C, … 這些 unknowns 解出來) 193 Trial Particular Solutions (from text page 143) g(x) Form of yp 1 (any constant) A 5x + 7 Ax + B 3x2 – 2 Ax2 + Bx + C x3 – x + 1 Ax3 + Bx2 + Cx + E sin4x Acos4x + Bsin4x cos4x Acos4x + Bsin4x e5x Ae5x (9x – 2)e5x (Ax + B)e5x x2e5x (Ax2 + Bx + C)e5x e3xsin4x Ae3xcos4x + Be3xsin4x 5x2sin4x (Ax2 + Bx + C)cos4x + (Ex2 + Fx + G)sin4x xe3xcos4x (Ax + B)e3xcos4x + (Cx + E)e3xsin4x It comes from the “form rule”. See page 198. 194 g x e 2 x xe3 x yp = ? g x cos x x 2 sin 2 x yp = ? g x cosh 2 x yp = ? 195 4-4-3 Examples Example 2 y y y 2sin 3x (text page 141) Step 1: find the solution of the associated homogeneous equation Guess Step 2: particular solution y p A cos3x B sin 3x yp 3 A sin 3x 3B cos3x yp 9 A cos3x 9 B sin 3x yp yp y p (8 A 3B)cos3x (3 A 8B)sin 3x 2sin 3x 8 A 3B 0 3 A 8B 2 Step 3: General solution: A = 6/73, B = 16/73 y p 6 cos3 x 16 sin 3 x 73 73 y e x / 2 c1 cos 3 x c2 sin 3 x 6 cos3x 16 sin 3x 2 2 73 73 Example 3 y 2 y 3 y 4 x 5 6 xe 2x (text page 142) 196 Step 1: Find the solution of y 2 y 3 y 0. yc c1e3 x c2e x Step 2: Particular solution y 2 y 3 y 4 x 5 guess y p1 Ax B yp1 A yp1 0 3 Ax 2 A 3B 4 x 5 A 4 , B 23 3 9 y p1 4 x 23 3 9 y 2 y 3 y 6 xe2 x guess y p2 Cxe2 x Ee2 x yp2 2Cxe 2 x Ce 2 x 2 Ee 2 x yp2 4Cxe 2 x 4Ce 2 x 4 Ee 2 x 3Cxe 2 x 2C 3E e 2 x 6 xe 2 x C 2, E 4 3 y p2 (2 x 4 )e 2 x 3 Particular solution y p y p1 y p2 4 x 23 (2 x 4 )e x 3 9 3 Step 3: General solution y yc y p y c1e3 x c2e x 4 x 23 (2 x 4 )e 2 x 3 9 3 197 4-4-4 方法的解釋 Form Rule: yp should be a linear combination of g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), ……………. Why? 如此一來,在比較係數時才不會出現多餘的項 198 When g(x) = 199 xn x n x n1 x n2 x n3 y p An x n An1 x n1 An2 x n2 When g(x) = cos kx cos kx sin kx y p A1 cos kx A2 sin kx When g(x) = exp(kx) e kx y p A exp(kx) 1 0 A0 When g(x) = 200 xnexp(kx) g x nx n1e kx kx n e kx g x n(n 1) x n2e kx 2nkx n1e kx k 2 x ne kx g x n(n 1)(n 2) x n3e kx 3kn(n 1) x n2e kx 3k 2 nx n1e kx k 3 x ne kx : : 會發現 g(x) 不管多少次微分,永遠只出現 x nekx , x n1ekx , x n2ekx , x n3ekx , y p cn x nekx cn1 x n1ekx cn2 x n2e kx , ekx c0e kx 201 4-4-5 Glitch of the method: Example 4 y 5 y 4 y 8e x (text page 142) Particular solution guessed by Form Rule: y p Ae x yp 5 yp 4 y p Ae x 5 Ae x 4 Ae x 8e x 0 8e x Why? (no solution) 202 Glitch condition 1: The particular solution we guess belongs to the complementary function. For Example 4 y 5 y 4 y 8e x x 4x Complementary function yc c1e c2e Ae x yc 解決方法:再乘一個 x y p Axe x yp Axe x Ae x yp Axe x 2 Ae x yp 5 yp 4 y p 3 Ae x 8e x y p 8 xe x 3 y c1e x c2e 4 x 8 xe x 3 A 8/ 3 Example 7 y 2 y y e x 203 (text page 144) yc c1e x c2 xe x From Form Rule, the particular solution is Aex Ae x yc Axe x yc y p Ax 2e x 如果乘一個 x 不夠,則再乘一個 x yp ( Ax 2 2 Ax)e x yp ( Ax 2 4 Ax 2 A)e x yp 2 yp y p 2 Ae x e x y p x 2e x / 2 y c1e x c2 xe x x 2e x / 2 A 1/ 2 Example 8 (text page 145) y y 4 x 10sin x 204 y 0 Step 1 yc c1 cos x c2 sin x Step 2 y p Ax B Cx sin x Ex cos x y 2 注意: sinx, cosx 都要 乘上 x y p 4 x 5 x cos x Step 3 y c1 cos x c2 sin x 4 x 5 x cos x Step 4 Solving c1 and c2 by initial conditions (最後才解 IVP) c1 9 y c1 4 5 0 y c1 sin x c2 cos x 4 5cos x 5 x sin x c2 7 y c 9 2 2 y 9 cos x 7sin x 4 x 5 x cos x 205 Example 11 (text page 146) y (4) y 1 x 2e x yc c1 c2 x c3 x 2 c4e x From Form Rule y p A Bx 2e x Cxe x Ee x 修正 yp 只要有一部分和 yc 相 同就作修正 y p Ax3 Bx3e x Cx 2e x Exe x 乘上 x3 2 x x x If we choose y p A Bx e Cxe Ee 乘上 x x x 2 x y (4) y 2 Bxe (6 B C ) e 1 x e p ( p) 沒有 1, x2ex 兩項,不能比較係數,無解 206 If we choose y p Ax3 Bx 2e x Cxe x Ee x x x 2 x y (4) y 6 A 2 Bxe (6 B C ) e 1 x e p ( p) 沒有 x2ex 這一項,不能比較係數,無解 If we choose y p Ax3 Bx3e x Cx 2e x Exe x y (4) p y( p ) 6 A 3Bx 2e x 18 B 2C xe x (18 B 6C E )e x 1 x 2e x A = 1/6, B = 1/3, C = 3, E = 12 y p 1 x3 1 x3e x 3x 2e x 12 xe x 6 3 y c1 c2 x c3 x 2 c4e x 1 x 3 1 x 3e x 3x 2e x 12 xe x 6 3 207 Glitch condition 2: g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), …………… contain infinite number of terms. If g(x) = ln x ln x 1 1 1 2 3 x x x If g(x) = exp(x2) g x 2 xe x 2 g x (4 x 2)e 3 x2 g x (8 x 12 x)e 2 : : x2 208 4-4-6 本節需要注意的地方 (1) 記住 Table 4.1 的 particular solution 的假設方法 (其實和 “form rule” 有相密切的關聯) (2) 注意 “glitch condition” 另外,“同一類” 的 term 要乘上相同的東西 (參考 Example 11) (3) 所以要先算 complementary function,再算 particular solution (4) 同樣的方法,也可以用在 1st order 的情形 (5) 本方法只適用於 linear, constant coefficient DE 209 4-5 Undetermined Coefficients – Annihilator Approach For a linear DE: an y ( n ) x an1 y ( n1) x a1 y( x ) a0 y g x Annihilator Operator: 能夠「殲滅」 g(x) 的 operator 4-5-1 方法適用條件 (1) Linear, (2) Constant coefficients (3) g(x), g'(x), g'' (x), g'''(x), g(4)(x), g(5)(x), ………contain finite number of terms. 210 4-5-2 Find the Annihilator Example 1: (text page 150) g x 1 5 x 2 8 x3 annihilator: D4 g x e 3x annihilator: D + 3 k d Dk g x k g x dx d g x 3g x 0 dx g x 4e 2 x 10 xe 2 x 211 annihilator: (D − 2)2 (D − 2)2 = D2 − 4D + 4 d 2 g x 4 d g x 4g x 0 dx dx 2 註:當 coefficient 為 constants 時,function of D 的計算方式 和 function of x 的計算方式相同 (x − 2)2 = x2 − 4x + 4 (D − 2)2 = D2 − 4D + 4 212 General rule 1: If g x an x n an1x n1 then the annihilator is D a0 e x n 1 注意: annihilator 和 a0, a1, …… , an 無關 只和 , n 有關 213 General rule 2: n n1 If g x an x an1x a0 e x b1 cos x b2 sin x b1 0 or b2 0 2 2 2 then the annihilator is D 2 D Example 2: (text page 151) annihilator Example 5: (text page 154) annihilator Example 6: (text page 155) annihilator n 1 g x 5e x cos 2 x 9e x sin 2 x D2 2D 5 g x x cos x cos x 2 D 1 g x 10e 2 x cos x 2 D2 4D 5 214 General rule 3: If g(x) = g1(x) + g2(x) + …… + gk(x) Lh[gh(x)] = 0 but Lh[gm(x)] 0 if m h, then the annihilator of g(x) is the product of Lh (h = 1 ~ k) Lk Lk 1 Proof: Lk Lk 1 Lk Lk 1 L2 L1 L3 L2 L1 g1 g 2 g 3 L3 L2 L1 g1 Lk Lk 1 gk L3 L2 L1 g 2 Lk Lk 1 L3 L2 L1 g3 Lk Lk 1 Lk Lk 1 L3 L2 L1g1 Lk Lk 1 L3 L2 L1g1 0 Lk Lk 1 L3 L2 L1g2 Lk Lk 1 L3 L1 L2 g2 0 L3 L2 L1 g k (因為 L1, L2 為 linear DE with constant coefficient, L1L2 = L2L1 ) 215 Similarly, Lk Lk 1 L4 L3 L2 L1g3 Lk Lk 1 Lk Lk 1 : : L4 L3 L2 L1g3 Lk 1 L4 L2 L1 L3 g3 0 L4 L3 L2 L1 Lk g k 0 Therefore, Lk Lk 1 L3 L2 L1 g1 g 2 g 3 000 0 0 gk 216 Example 7 (text page 154) g x 5 x 2 6 x 4 x 2e 2 x 3e5 x annihilator: D − 5 annihilator: D3 annihilator: (D − 2)3 annihilator of g(x): D3 (D − 2)3 (D − 5) 217 4-5-3 Using the Annihilator to Find the Particular Solution Step 2-1 Find the annihilator L1 of g(x) Step 2-2 如果原來的 linear & constant coefficient DE 是 L y g x 那麼將 DE 變成如下的型態: L1 L y L1 g x 0 (homogeneous linear & constant coefficient DE) (n) ( n 1) x 註: If an y x an1 y n n1 then L an D an1D a1 y( x ) a0 y g x a1D a0 218 Step 2-3 Use the method in Section 4-3 to find the solution of L1 L y 0 Step 2-4 Find the particular solution. The particular solution yp is a solution of L1 L y 0 but not a solution of L y 0 (Proof): Since L y p g ( x) , if g(x) 0, L y p should be nonzero. Moreover, L1 L y p L1 g x 0. Step 2-5 Solve the unknowns 219 solutions of L1 L y 0 particular solution yp solutions of L y 0 particular solution yp solutions of L1 L y 0 solutions of L y 0 本節核心概念 4-5-4 Examples 220 Example 3 (text page 152) y 3 y 2 y 4 x 2 Step 1: Complementary function (solution of the associated homogeneous function) yc c1e x c2e2 x Step 2-1: Annihilation: D3 L1 L y L1 g x 0 Step 2-2: D3 ( D2 3D 2) y 0 Step 2-3: auxiliary function m3 (m2 3m 2) 0 roots: m1 = m2 = m3 = 0, m4 = −1, m5 = −2 移除和 complementary Solution for L1 L y 0 : function 相同的部分 2 x 2 x y d1 d 2 x d3 x d 4e d5e Step 2-4: particular solution y p A Bx Cx Step 2-5: 2 yp B 2Cx yp 2C yp 3 yp 2 y 2Cx 2 (2 B 6C ) x (2 A 3B 2C ) 4 x 2 2C 4 2 B 6C 0 2 A 3B 2C 0 C2 B 6 A7 y p 7 6x 2x2 x 2 x 2 Step 3: y yc y p c1e c2e 7 6 x 2 x 221 222 Example 4 (text page 153) y 3 y 8e3 x 4sin x Step 1: Complementary function From auxiliary function, m2 − 3m = 0, roots: 0, 3 yc c1 c2e3 x Step 2-1: Find the annihilator D−3 annihilate 8e3 x (D2 + 1) annihilate 4sin x but cannot annihilate 8e3 x but cannot annihilate 4sin x (D − 3)(D2 + 1) is the annihilator of 8e3 x 4sin x Step 2-2: D 3 ( D2 1) D2 3D y 0 2 2 Step 2-3: auxiliary function: m 3 (m 1) m 3m m m 3 (m 2 1) 0 223 易犯錯的地方 2 solution of D 3 ( D2 1) D2 3D y 0 : y d1 d 2e3 x d3 xe3 x d 4 cos x d5 sin x Step 2-4: particular solution y p d3 xe3 x d 4 cos x d5 sin x 代回原式 並比較係數 8 xe3 x 6 cos x 2 sin x y Step 2-5: p 3 5 5 Step 3: general solution y c1 c2e3 x 8 xe3 x 6 cos x 2 sin x 3 5 5 4-5-5 本節要注意的地方 (1) 所以要先算 complementary function,再算 particular solution (2) 若有兩個以上的 annihilator,選其中較簡單的即可 (3) 計算 auxiliary function 時有時容易犯錯 (4) L1 L y 0 的解和 L y 0 的解不一樣。 (5) 這方法,只適用於 constant coefficient linear DE (因為,還需借助 auxiliary function) 224 225 The thing that can be done by the annihilator approach can always be done by the “guessing” method in Section 4-4, too. 226 4-6 Variation of Parameters 4-6-1 方法的限制 The method can solve the particular solution for any linear DE (1) May not have constant coefficients (2) g(x) may not be of the special forms an x y ( n ) x an1 x y ( n1) x a1 x y( x ) a0 x y g x 227 4-6-2 Case of the 2nd order linear DE a2 x y( x) a1 x y( x) a0 x y g x associated homogeneous equation: an x y( x) a1 x y( x) a0 x y 0 Suppose that the solution of the associated homogeneous equation is c1 y1 ( x) c2 y2 ( x) Then the particular solution is assumed as: y p u1 ( x) y1 ( x) u2 ( x) y2 ( x) (方法的基本精神) y p u1 ( x) y1 ( x) u2 ( x) y2 ( x) 代入原式後,總是可以簡化 228 yp u1 y1 u1 y1 u2 y2 u2 y2 yp u1y1 2u1 y1 u1 y1 u2 y2 2u2 y2 u2 y2 代入 y( x) P x y( x) Q x y f x a0 ( x) a1 ( x) P x , Q x , a2 ( x) a2 ( x) zero g ( x) f x a2 ( x ) zero yp P x yp Q x y p u1 y1 Py1 Qy1 u2 y2 Py2 Qy2 y1u1 2u1 y1 y2u2 2u2 y2 P y1u1 y2u2 yp P x yp Q x y p f x , y p u1 y1 u2 y2 簡化 d y u y u P y u y u yu y u f x 2 2 1 1 2 2 1 1 2 2 dx 1 1 進一步簡化: 假設 y1u1 y2u2 0 y1u1 y2 u2 f x 聯立方程式 y1u1 y2u2 0 y1u1 y2u2 f x 229 y1u1 y2u2 0 y1u1 y2u2 f x y1 where W y1 y2 y2 y2 f x W1 u1 W W u2 W1 W2 y1 f x W W 0 f ( x) y2 y2 y1 W2 y1 | |: determinant y p x u1 x y1 x u2 x y2 x 可以和 1st order case (page 58) 相比較 u1 u1 x dx u2 u2 x dx 0 f ( x) 230 4-6-3 Process for the 2nd 231 Order Case Step 2-1 變成 standard form y( x) P x y( x) Q x y f x Step 2-2 y1 W y1 y2 y2 W1 W W1 u2 0 f ( x) y2 y2 W2 W Step 2-3 u1 Step 2-4 u1 u1 x dx Step 2-5 y p x u1 x y1 x u2 x y2 x u2 u2 x dx y1 W2 y1 0 f ( x) 232 4-6-4 Examples Example 1 (text page 159) y 4 y 4 y ( x 1)e2 x Step 1: solution of y 4 y 4 y 0 : yc c1e2 x c2 xe2 x Step 2-2: y p u1 y1 u2 y2 , W W2 e2 x 2e 2x xe2 x 2 xe e 2x 2x e2 x 0 2e2 x ( x 1)e2 x Step 2-3: u1 y1 e2 x , e 4x W1 y2 xe2 x 0 xe2 x ( x 1)e2 x 2 xe2 x e2 x ( x 1)e4 x W1 x2 x W u2 W2 x 1 W ( x 1) xe4 x Step 2-4: u1 u1dx ( x x)dx 1 x 3 1 x 2 c1 3 2 u2 u2 dx ( x 1)dx 1 x 2 x c2 2 2 Step 2-5: y p ( 1 x3 1 x 2 )e 2 x ( 1 x 2 x) xe 2 x ( 1 x 3 1 x 2 )e2 x 3 2 2 6 2 Step 3: y c1e 2 x c2 xe 2 x ( 1 x3 1 x 2 )e 2 x 6 2 233 4 y 36 y csc3x Example 2 (text page 159) Step 1: solution of 4 y 36 y 0 : Step 2-1: standard form: Step 2-2: W cos3 x yc c1 cos3x c2 sin 3x y 9 y csc3x / 4 sin 3 x 3sin 3 x 3cos3 x cos3 x 234 3 f ( x) csc3 x / 4 0 sin 3 x W1 1 1/ 4 csc3 x 3cos3 x 4 0 1 cos3 x sin 3 x 1 csc3 x 4 sin 3 x 4 W1 W2 1 cos3x 1 u u Step 2-3: 1 2 12 W W 12 sin 3x x Step 2-4: u1 12 u2 1 ln sin 3 x 36 1 cos3 x (未完待續) 注意 dx 12 sin 3 x W2 算法 x 1 Step 2-5: y p 12 cos3 x 36 sin 3 x ln sin 3 x Step 3: 235 y yc y p c1 cos3x c2 sin 3x x cos3x 1 sin 3x ln sin 3x 12 36 Note: 課本 Interval (0, /6) 改為(0, /3) Example 3 (text page 160) y y 1/ x f ( x) 1/ x Note: ex x dx 沒有 analytic 的解 et 所以直接表示成 dt x0 t x (複習 page 45) 236 4-6-5 Case of the Higher Order Linear DE an x y ( n ) x an1 x y ( n1) x a1 x y( x ) a0 x y g x Solution of the associated homogeneous equation: yc c1 y1 ( x) c2 y2 ( x) c3 y3 ( x) cn yn ( x) The particular solution is assumed as: y p u1 ( x) y1 ( x) u2 ( x) y2 ( x) u3 ( x) y3 ( x) uk ( x) Wk W uk ( x) uk ( x)dx u n ( x ) yn ( x ) 237 uk ( x) Wk W W y1 y1 y2 y2 y3 y3 yn yn y1 y2 y3 yn y1( n1) y2( n1) y3( n1) yn( n1) y1 y1 y2 y2 yk 1 yk 1 0 y1( n2) y2( n2) y1( n1) y2( n1) 0 yk 1 yk 1 yn yn yk( n12) 0 yk( n1 2) yn( n2) yk( n11) f ( x) yk( n11) yn( n1) Wk f x g x / an x Wk: replace the kth column of W by 0 0 0 f ( x ) 238 g x f x an x For example, when n = 3, 0 W1 0 y2 y2 y3 y3 f ( x) y2 y3 y1 0 W2 y1 0 y1 f ( x) y3 y3 y3 y1 y2 W3 y1 y2 y1 y2 0 0 f ( x) 239 4-6-6 Process of the Higher Order Case Step 2-1 變成 standard form an1 x ( n1) (n) y x y x an x a1 x a0 x g x y ( x) y an x an x an x Step 2-2 Calculate W, W1, W2, …., Wn (see page 237) Step 2-3 u1 W1 W u2 Step 2-4 u1 u1 x dx Step 2-5 W2 W ……… un Wn W u2 u2 x dx ……. un un x dx y p x u1 x y1 x u2 x y2 x un x yn x 240 4-6-7 本節需注意的地方 (1)養成先解 associated homogeneous equation 的習慣 (2) 記熟幾個重要公式 (3) 這裡 | | 指的是 determinant (4) 算出 u1(x) 和 u2(x) 後別忘了作積分 特別要小心 (5) f(x) = g(x)/an(x) (和 1st order 的情形一樣,使用 standard form) (6) 計算 u1'(x) 和 u2'(x) 的積分時,+ c 可忽略 因為 我們的目的是算particular solution yp yp 是任何一個能滿足原式的解 (7) 這方法解的範圍,不包含 an(x) = 0 的地方 241 4-7 Cauchy-Euler Equation 4-7-1 解法限制條件 an x n y ( n ) x an1 x n1 y ( n1) x not constant coefficients a1 xy( x ) a0 y g x k k but the coefficients of y(k)(x) have the form of ak x ak is some constant associated homogeneous equation an x n y ( n ) x an1 x n1 y ( n1) x a1 xy( x) a0 y 0 particular solution 242 4-7-2 解法 Associated homogeneous equation of the Cauchy-Euler equation an x n y ( n ) x an1 x n1 y ( n1) x a1xy( x ) a0 y 0 Guess the solution as y(x) = xm , then m n 1 x mn an1 x n1m(m 1)(m 2) m n 2 x mn1 an2 x n2 m(m 1)(m 2) m n 3 x mn 2 an x n m(m 1)(m 2) a1 xmx m1 a0 x m 0 an m(m 1)(m 2) an1m(m 1)(m 2) an2 m(m 1)(m 2) m n 1 m n 2 m n 3 243 auxiliary function 比較: 和 constant coefficient 時有何不同? a1m a0 0 k m! d 規則:把 x 變成 (m k )! dx k k 4-7-3 For the 2nd 244 Order Case a2 x 2 y x a1 xy( x) a0 y 0 auxiliary function: a2m m 1 a1m a0 0 roots m1 a2 a1 a2 m2 a1 a2 m a0 0 a1 a2 4a2a0 a2 a1 m2 2a2 2 a1 a2 2 4a2a0 [Case 1]: m1 m2 and m1, m2 are real two independent solution of the homogeneous part: x m1 and x m2 yc c1 x m1 c2 x m2 2a2 245 [Case 2]: m1 = m2 Use the method of reduction of order y1 x m1 a1 dx a2 x P ( x ) dx e e y2 x y1 x 2 dx x m1 2 m1 dx y1 x x a0 a1 y ( x ) y 0, Note 1: 原式 2 a2 x a2 x a2 a1 Note 2: 此時 m1 m2 2a2 y x a1 P x a2 x 246 y2 x x 1 a 1 a2 m1 e x x m1 x a1 dx a2 x 2 m1 a1 a2 x dx x a1 a2 a2 m1 e a1 ln x a2 x 2 m1 dx x m1 a1 a2 x dx 2 m1 x dx x m1 x 1dx x m1 ln x If y2(x) is a solution of a homogeneous DE then c y2(x) is also a solution of the homogeneous DE m If we constrain that x > 0, then y2 x 1 ln x yc c1 x m1 c2 x m1 ln x 247 [Case 3]: m1 m2 and m1, m2 are the form of m2 j m1 j two independent solution of the homogeneous part: x j and x j yc C1 x j C2 x j x j (elnx ) j e( j ) ln x e ln x e j ln x x cos( ln x) j sin( ln x) j x x cos( ln x) j sin( ln x) 同理 yc x [(C1 C2 )cos ln x (C1 C2 )sin ln x ] yc x [c1 cos ln x c2 sin ln x ] 248 Example 1 (text page 163) x 2 y x 2 xy( x) 4 y 0 Example 2 (text page 164) 4 x 2 y x 8 xy( x) y 0 249 Example 3 (text page 165) 4 x y x 17 y 0 2 y 1 1 y 1 1 2 250 4-7-4 For the Higher Order Case Process: auxiliary function roots n independent solutions Step 1-1 Step 1-2 solution of the nth order associated Step 1-3 homogeneous equation 251 (1) 若 auxiliary function 在 m0 的地方只有一個根 xm0 是 associated homogeneous equation 的其中一個解 (2) 若 auxiliary function 在 m0 的地方有 k 個重根 x m0 , x m0 ln x , x m0 (ln x) 2 , , x m0 (ln x) k 1 皆為 associated homogeneous equation 的解 252 (3) 若 auxiliary function 在 + j 和 − j 的地方各有一個根 (未出現重根) x cos ln x , x sin ln x 是 associated homogeneous equation 的其中二個解 (4) 若 auxiliary function 在 + j 和 − j 的地方皆有 k 個重根 x cos ln x , x cos ln x ln x, x cos ln x (ln x) 2 , , x cos ln x (ln x) k 1 x sin ln x , x sin ln x ln x , x sin ln x (ln x) 2 , x sin ln x (ln x) k 1 是 associated homogeneous equation 的其中2k 個解 , Example 4 (text page 166) x3 y x 5 x 2 y x 7 xy( x) 8 y 0 auxiliary function m m 1 m 2 5m m 1 7m 8 0 m3 3m2 2m 5m2 5m 7m 8 0 m3 2 m 2 4 m 8 0 m 2 m2 4 0 253 254 4-7-5 Nonhomogeneous Case To solve the nonhomogeneous Cauchy-Euler equation: Method 1: (See Example 5) (1) Find the complementary function (general solutions of the associated homogeneous equation) from the rules on pages 244-247, 251-252. (2) Use the method in Sec.4-6 (Variation of Parameters) to find the particular solution. (3) Solution = complementary function + particular solution Method 2: See Example 6,重要 Set x = et, t = ln x 255 Example 5 (text page 166, illustration for method 1) x 2 y x 3xy( x) 3 y 2 x 4e x Step 1 solution of the associated homogeneous equation auxiliary function m m 1 3m 3 0 m2 3 yc c1 x c2 x3 Step 2-2 Particular solution W W1 Step 2-3 0 x3 2 x 2e x 3x 2 u1 x x3 1 3x 2 2 x3 W2 2 x e W1 x 2e x W m1 1 m 2 4m 3 0 5 x u2 x 0 1 2 x 2e x W2 ex W 2 x 3e x Step 2-4 u1 u1dx x e 2 xe 2e 2 x x 256 x u2 u2 dx e x Step 2-5 y p u1 y1 u2 y2 2 x 2e x 2 xe x Step 3 y c1 x c2 x3 2 x 2e x 2 xe x Example 6 (text page 167, illustration for method 2) x 2 y x xy( x) y ln x Set x = et, t = ln x dy dt dy 1 dy dx dx dt x dt (chain rule) d 2 y d dy dt d dy 1 d 1 dy 2 dx dx dx dx dt dx x dt x dt 1 d 2 y 1 d 1 dy 1 d 2 y dy 2 2 2 2 x dt x dt x dt x dt dt Therefore, the original equation is changed into d 2 y t 2 d y (t ) y (t ) t dt dt 2 257 258 d 2 y t 2 d y (t ) y (t ) t dt dt 2 y (t ) c1et c2tet t 2 y( x) c1 x c2 x ln x ln x 2 (別忘了 t = ln x 要代回來) Note 1: 以此類推 dk y 1 k Dt k 1 k dx x Dt 1 Dt y Dt means d dt Note 2: 簡化計算的小技巧:結合兩種解 nonhomogeneous CauchyEuler equation 的長處 259 4-7-6 本節要注意的地方 (1) 本節公式記憶的方法: 把 Section 4-3 的 ex 改成 x,x 改成 ln(x) 把 auxiliary function 的 mn 改成 m(m 1)(m 2) (2) 如何解 particular solution? Variation of Parameters 的方法 (3) 解的範圍將不包括 x = 0 的地方 (Why?) m n 1 260 還有很多 linear DE 沒有辦法解,怎麼辦 (1) numerical approach (Section 4-9-3) (2) using special function (Chap. 6) (3) Laplace transform and Fourier transform (Chaps. 7, 11, 14) (4) 查表 (table lookup) 261 (1) 即使用了 Section 4-7 的方法,大部分的 DE還是沒有辦法解 (2) 所幸,自然界真的有不少的例子是 linear DE 甚至是 constant coefficient linear DE 262 Exercise for practice Section 4-4 5, 6, 14, 17, 18, 24, 26, 32, 33, 39, 42 Section 4-5 2, 7, 13, 18, 31, 45, 62, 69, 70 Section 4-6 4, 5, 8, 13, 14, 17, 18, 21, 24, 25, 30 Section 4-7 11, 17, 18, 20, 21, 24, 32, 34, 36, 37, 42 Review 4 2, 19, 20, 23, 25, 26, 27, 28, 30, 31, 33, 38