主站下载

Download Report

Transcript 主站下载

LED发展
1
2020年4月27日星期一
LED光效发展
2
2020年4月27日星期一
LED产品流程
Solutions Program
LED
POWER电源
Solutions方案
Customer
opportunities
THERMAL热
solutions
OPTICAL光学
solutions
3
2020年4月27日星期一
End
Products
最终产品
LED Characteristics LED特征
Working Principle of an LED LED工作原理
Optical and Electrical Characteristics 光学及电子特征
Temperature Characteristics 温度特征
4
2020年4月27日星期一
Working Principle of an LED LED工作原理
Electrical Model 电子模型
Iforward
Anode阳极
(Electrons电子)
Vforward
Cathode 阴极
fvisible 可见光通量
(Photons光子)
PN-Junction PN节
•Same principle for all colors 所有颜色
同样规律 (AlInGaP & InGaN)
•Power dissipation:1-5 Watt 能量1-5W
•Package Extraction Efficiency: >95%
封装输出效率
•Maximum Ratings 最大范围
•Tjunction-max = 120°C
• Iforward-max = Product dependent
5
2020年4月27日星期一
Lumileds AlInGaP Technology
Absorbing
Substrate吸收层
(1991)
6
Transparent
Substrate透明层
(1994)
Batwing 蝙蝠翼
(1998)
Lambertian
朗伯体
(mid 2001)
~ 3x flux
improvement
~ 15x flux
improvement
~ 30x flux
improvement
2020年4月27日星期一
OSRAM ThinGaN & Thinfilm
7
2020年4月27日星期一
InGaN Technology for Green, Blue, and White
8
HP Indicator LED
(1998)
LumiLeds Power LED
(1999)
(2001)
300x400um2
1000x1000um2
1000x1000um2
~ 10 x flux
improvement
~ 17 x flux
improvement
2020年4月27日星期一
InGaN vs AlInGaP LED Technology
InGaN
LED Junction
Light
AlInGaP
Silver reflector 硅反射
Sapphire 蓝宝石
InGaN
AuZn Contact Pad焊盘
LED Junction
p-Al0.5In0.5P (UCL)
(AlxGa1-x)0.5In0.5P
Active Layer
n-Al0.5In0.5P (LCL)
Wire bond线焊点
GaP Substrate
( ~ 200 µm)
Silicon submount硅基
Anode阳极
Anode
3.4 V at 350 mA
3.0 V at 350 mA
Blue
7 V at -100 uA
Cathode阴极
9
VPE GaP Window
( ~ 50 µm)
2020年4月27日星期一
Red/Amber
20V at -100 mA
Cathode
Luxeon Slug Electrical Potential
LED Chip
LED芯片
Plastic Lens才
塑料透镜
Body
Anode Lead
-
+
Cathode Lead
Slug
引线
Slug
-
AlInGaP Die in 1W
Batwing Package
slug
+
-
+ OR InGaN Die in all
Luxeon Packages
Slug
10
2020年4月27日星期一
-
+
+
AlInGaP Die in 1W
Lambertian & Side
Emitter Package
Slug
Light Output Characteristics光学输出特征
1.6
Normalized Relative Luminous Flux
Flux with Current光输出曲线
Tjunction = 25oC
1.4
Blue
Royal Blue
Green
Cyan
1.2
White
1
typical
0.8
0.6
worst
case
0.4
typical
0.2
Red
Amber
0
0
100
200
300
400
Flux with Temperature
光通与温度
11
2020年4月27日星期一
Relative Light Output (LOP)
Forward Current (mA)
200%
Red
Amber
Blue
Royal Blue Green
Cyan
150%
White
100%
50%
0%
-40
-20
0
20
40
60
80
Junction Temperature TJ [°C]
100
120
Luminous Flux versus temperature光通与温度关系
f V (TA )  f V (25C)e
k(TA - 25 C)
Where k = - 0.0106/ °C Red/Orange AlInGaP
= - 0.0175/ °C Amber AlInGaP
12
2020年4月27日星期一
Red - Orange (k = - 0.0106)
1.6
Relative Luminous Flux
1.4
1.2
1
Instantaneous
200 C/W
400 C/W
600 C/W
0.8
0.6
0.4
0.2
0
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Forward Current - A
• LumiLeds tests thermally stabilized luminous flux 热稳定后的光通量
• SuperFlux, SnapLED 70 tested at 200C/W, SnapLED 150 tested at 100 C/W
• Customer usage 200 to 500 C/W
13
2020年4月27日星期一
The flux versus current graph 光通与电流曲线
Basic equations 基础方程:
 IF
 INST I F    INST TEST 
 I F TEST

 and

 IF
 TH ST I F    INST TEST 
 I F TEST

 exp kR J  AIR PD 

 TH ST
  INST exp kR J  AIR PD 
Normalized to 1 at IF-TEST, RTEST, PD-TEST
TH ST TEST
  INST TEST exp kR TEST PD TEST 
Then:
 TH ST I F 
 TH ST TEST
14

IF
I F TEST
2020年4月27日星期一
exp kR J  AIR PD 
exp kR TEST PD TEST 
Forward Current Characteristics 工作电流特性
400
350
Forward Current (mA)
300
250
200
Red, Reddish Orange,
Royal Blue, Blue, Cyan,
Amber(AlInGaP)
Green, White (InGaN)
150
100
Larger LED to LED
variations
50
Threshold Voltage极限电压
0
0.0
0.5
1.0
1.5
2.0
2.5
Forward Voltage (V)
15
2020年4月27日星期一
3.0
3.5
4.0
Relative Intensity
Wavelength Characteristics波长特征
1.0
0.9
0.8
0.7
0.6
CYAN
B LUE
ROYAL
B LUE
0.5
0.4
0.3
0.2
0.1
0.0
400
A M B ER
GREEN
RED
450
500
550
600
650
700
Wavelength (nm)
16
Dominant Wavelength主波长:
Spectral Halfwidth光谱半宽度:
RED红色=629nm
GREEN=530nm
RED=19nm
GREEN=35nm
AMBER=590nm
CYAN青色=505nm
AMBER=19nm
CYAN=30nm
BLUE=470nm
BLUE=25nm
ROYAL BLUE=455nm
ROYAL BLUE=20nm
2020年4月27日星期一
Number of Parts Produced
Number of Parts Produced
Luxeon Binning Example: Green 绿色分区举例
Batch to Batch
Variations 每批号
L
Bin Limits [lm]
M
N
O
1.3
1.3
Bining 分区
= 易于管理
Subdividing large quantities
into manageable quantities
Color bins
Bin Width [V]
H
J
0.24 0.24 0.24
Batch to Batch
Variations
1
2
3
4
Bin Limits[nm] 525 530 535 540
17
G
Bin Limits [V] 2.79 3.03 3.27 3.51
13.9 18.1 23.5 30.6
Ratio Upper/Lower 1.3
Variations
Voltage bins F
P
Number of Parts Produced
Flux bins
Batch to Batch
Bin Width [nm]
2020年4月27日星期一
5.0
5.0
5.0
5
6
K
SuperFlux
18
2020年4月27日星期一
Luxeon Binning Luxeon分区
Lumileds LEDs are 100% electrically and optically tested 100%
经过电子光学选择筛选
Each unit is binned for Luminous Flux, Forward Voltage and Dominant
Wavelength or Correlated Color Temperature 每个颗粒都按照光通、电压、波
长或色温进行分区
All binning is done at nominal current !
19
2020年4月27日星期一
白光的获得
20
2020年4月27日星期一
LED Parameter vs.Temperature LED参数及温度
As temperature rises温度上升时:
• Light Output decreases 光输出量下降
• Wavelength gets longer (towards red) 波长变长
(朝红光方向)
400
• Forward Voltage decreases 电压下降
Tamb = -20°C
+25°C
Amber
+85°C
1
300
250
200
Royal Blue, Blue, Cyan,
Green, White (InGaN)
Red, Reddish Orange,
Amber(AlInGaP)
150
100 V  -2mV / °C
f
50
0
570
580
590
lpeak
600
0
610
Wavelength [nm]
21
Forward Current (mA)
Relative Intensity
2
350
2020年4月27日星期一
620
630
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Forward Voltage (V)
Dominant l vs. Temperature 波长与温度
Color
Amber
Red
.04
Green
22
K (nm/ºC)
.09
.03
Blue
Cyan
 K
.04
.04
2020年4月27日星期一
As LED’s get hotter, colors shift to longer
wavelengths. 当LED变热,颜色将向长波方向移动
Example: What is the color shift of an amber LED whose Tj is
40C? What will lD be at Tj 40 C?
lD1 = 590 nm (@T1= 25 C)
lD2 = ? nm (@T2= 40 C)
 lD
T
(lD2-lD1)
(T2-T1)
=
λD
(nm/ C )
T
= .09 nm/ C
 lD = (.09 nm/ C)* (T2-T1)
= (.09 nm/ C)*(40 -25 C) = 1.35 nm
Therefore, lD2 = 591.35 nm
Electrical 电性能
Series and Parallel Drive Circuits串并联回路
PWM and Dimming PWM及调光
Active Drive Circuits 动态驱动
23
2020年4月27日星期一
Series String Drive Circuits 多点串联回路
Resistor R = Current Limiting Device限流设计
I
F
R
+
V
S
-
R
R
R
+
V
F
-
2
L
E
D 3
L
E
D 4
L
E
D 5
L
E
D
S
e
r
i
e
s
S
t
r
i
n
g
S
e
r
i
e
s
S
t
r
i
n
g
S
e
r
i
e
s
S
t
r
i
n
g
S
e
r
i
e
s
S
t
r
i
n
g
R
VS  nVF
IF
IF 
VS  nVF
R
More sensitive to varying 变化更加敏感Vs; Higher system efficiency更高效率
Less sensitive to varying Vs; Lower system efficiency
24
2020年4月27日星期一
Effect of String Length on Forward Current with Varying Voltage
HPWA-xH00 Vf bin 0, based on 40 mA at 12.8V
0.12
Forward Current
0.1
0.08
2 LED
3 LED
4 LED
5 LED
6 LED
6 LED diode model
0.06
0.04
0.02
0
9
10
11
12
13
Ignition Voltage
25
2020年4月27日星期一
14
15
16
Paralleled LEDs并联
+
If
Vf
If1
+
LED1 If2
LED2
Vf
–
–
1LXHL-BL01 VF Bin F
Vf_bin width (Luxeon) = 0.24V@350mA
1
350 mA
2.100 V
Low Current
0.1
Forward Current
Operating Point 1
0.01
bin F 0.1% tile
bin F 99.9% tile
350 mA
2.1 V
0.001
Low Current
Operating Point 2
0.0001
0.00001
1.6
1.8
2.0
2.2
2.4
Forward Voltage
26
2020年4月27日星期一
2.6
2.8
3.0
Typical Circuit Configurations
R
+
R
R
–



VIN

Y LED
lamps per
string
VIN
–
Series-connected strings
Configuration A



Y LED
lamps per
string
Paralleled strings
Configuration B
X strings
R

+

Recommended



–
Z LED lamps per “rung”. Y LED
Note z = 1,2…y
lamps per
(z = 1 is illustrated)
string

VIN
27
R

+

X strings

X strings

Cross-connected paralleled strings
Configuration C
2020年4月27日星期一
Dimming Operation 调光操作
Disadvantages of DC drive 不利的直流驱动
Light output matching is worse at low currents
Low current operation of paralleled strings of LED lamps causes large
forward current variations
Benefits of PWM operation PWM好处
Drive LED lamps at same peak current but at low duty cycle
Eliminates matching problems caused by driving at low currents
28
2020年4月27日星期一
Maximum Peak Current 最大峰值电流
1.0 amp Luxeon
1.4 amp Luxeon III
Average pulse power should not exceed rated DC power
Do not exceed Tj max 不能超越最大Tj
Tj during pulse cannot be measured by placing TC on board (to much
thermal mass compared to die)
Duty Factor < 50% (need time to cool off)
145 million pulses and virtually no light output degradation
Lumileds is in the process of testing Luxeon devices at higher peak
currents. Thus please check back with Lumileds on this topic.
29
2020年4月27日星期一
Current Source Designs 横流源设计
Shunt Regulator
并联调节方式
RLOAD
+
Series-Pass Regulator
串联调节方式
Switching Regulator
开关调节方式
+
+
VIGN
VIGN
RSENSE
-
-
Not recommended
不推荐
2020年4月27日星期一
Load
VIGN
RSENSE
30
*
Load
Load
Chopper
RSENSE
-
Recommended
推荐
*Energy storage element
Highest efficiency
最高效率
Voltage Regulator Designs电压源方式
Shunt Regulator
RLOAD
+
Series-Pass Regulator
Switching Regulator
+
+
*
Load
Load
VIGN
VIGN
VIGN
-
-
-
Not recommended
31
2020年4月27日星期一
Recommended
Chopper
Load
*Energy storage element
Highest efficiency
Transient Protection 瞬时保护


High voltage silicon diode
protects against negative
transients 高电压硅二极管保护
反向电压
Transient suppressor protects
against high energy load
dump (16 to 18v)
•Lumiled’s LEDs survive positive voltage transients
well
•High voltage reverse transients can cause failures
•Use a high voltage silicon diode in series with the
assembly to protect against reverse transients
(example: 1N4004)
32
2020年4月27日星期一
Dimming Using Pulse Width Modulation 使用脉冲宽度方法调光
Duty Factor (%) = ton/(ton+toff)*100
If
DF=10%
1
2
3
4
5
If
6
7
8
9
DF=50%
1
2
3
4
5
6
7
8
10 11 12 13 14 15 16 17 18 19 20
ton
time(ms)
toff
9
10 11 12 13 14 15 16 17 18 19 20
time(ms)
9
10 11 12 13 14 15 16 17 18 19 20
time(ms)
If
DF=100%
1
33
2
3
4
5
6
7
8
2020年4月27日星期一
Typical Values: 典型值
f=200 Hz;
< 70 Hz produces visible flicker,
小于70Hz视觉有闪烁感
<100 Hz: strobe effects of
moving
LED>1000 Hz: possible EMC
problems 需要考虑EMC问题
Duty factor: 1:8 to 1:20 for
Tail/ Stop
• any Duty Factor is possible 任
意DF都可以
• adjust to meet desired intensity
ratio of different functions
•keep current change < 50 A/ms
to avoid EMC problems 保持每个
回路变化<50A/ms,防止EMC问
题
ISO 7637-1 EMC Test Pulse 3a
This test pulse is a simulation of transients, which occur as a result of the
switching processes. The characteristics of these transients are influenced
by distributed capacitance and inductance of the wiring harness.
测试脉冲模拟瞬时状态,它是电容、电感开关造成的瞬时脉冲
Voltage [V]
90%
10%
VB
tr
0
t4
34
= 100 us
= 10 ms
= 90 ms
< 5 ns
generally LEDs
pass this test
LED通常需要通过此测试
t1
VS
t1
t4
V = 13.5 + .5 V t 5
B
tr
t d = 0.1 us
2020年4月27日星期一
t5
Time
t
d
Thermal Management热控制
Thermal Management热控制
Heat Transfer Basics 热传导基础
Steady State Thermal Model稳态热模型
Examples 举例
Thermal Overstress 热应力
36
2020年4月27日星期一
Importance of Thermal Design 重要的热设计
1st Goal: Higher Flux 第一目标:高光通量
Increase LED Efficiency 提高LED效率
Increase Forward Current (Power) 提高工作电流(功率)
 Higher Chip/Junction Temperature (Tj) 产生高节点温度
2nd Goal: High Performance 第二目标:高效率
Increase Optical Performance 提高光学性能
Increase Reliability 提高可靠性
 Depend on Chip/Junction Temperature (Tj) 依赖节点温度限制
可靠的寿命
A Good Thermal Design is required to manage Tj.
好的热设计需要管理搞节点温度Tj.
37
2020年4月27日星期一
寿命测试方法
38
2020年4月27日星期一
39
2020年4月27日星期一
OSRAM Golden Dragon寿命
40
2020年4月27日星期一
OSRAM Multiled
OSRAM 6GT寿命资料
30mA
42mA
41
25℃
>30,000hour
55℃
>10,000hour
85℃
>5,000hour
25℃
>20,000hour
55℃
>9,000hour
85℃
>3,500hour
2020年4月27日星期一
As temperature rises:
• Light Output decreases
• Wavelength increases (towards red)
• Forward Voltage decreases
Relative Light Output (LOP)
LED Parameter vs.Temperature LED参数与温度
200%
Red Amber Blue
150%
Royal
Blue
Green
Cyan
White
100%
50%
0%
-40
-20
0
20
40
60
80
Junction Temperature TJ [°C]
100
120
Relative Intensity
Tamb = -20°C
+25°C
Amber
+85°C
1
0
570
580
590
lpeak
600
350
300
250
200
Royal Blue, Blue, Cyan,
Green, White (InGaN)
Red, Reddish Orange,
Amber(AlInGaP)
150
100 V  -2mV / °C
f
50
610
Wavelength [nm]
42
Forward Current (mA)
400
2
2020年4月27日星期一
620
630
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Forward Voltage (V)
Dominant l vs. Temperature
λD
(nm/ C )
T
Color
K (nm/ºC)
Amber
.09
Example: What is the color shift of an amber LED
whose Tj is 40C? What will lD be at Tj 40 C?
Red
.03
lD1 = 590 nm (@T1= 25 C)
lD2 = ? nm (@T2= 40 C)
Blue
.04
 lD
T
Green
.04
 lD = (.09 nm/ C)* (T2-T1)
= (.09 nm/ C)*(40 -25 C) = 1.35 nm
Cyan
.04
2020年4月27日星期一
=
43
 K
As LED’s get hotter, colors shift to longer
wavelengths.
(lD2-lD1)
(T2-T1) = .09 nm/ C
Therefore, lD2 = 591.35 nm
Heat Transfer Basics 热传导基础
Heat Transfer Modes: 热传导模型
Conduction – Important! 传导
Affected by the path from die to heat sink 受到散热片的影响
Convection – Important! 对流
Heat dissipated from the heat sink to ambient 散热片同周围环境
Radiation – Not Applicable 辐射
44
2020年4月27日星期一
Conduction - Fouriers Law传导—傅立叶公式
l
Q=
k * Ac
l
Ac
(T1 - T2)
T1
Q
Q = heat flow [W] 流失热量
k = thermal conductivity [W/mK]热导性
Ac = cross-sectional area [m2] 传导面积
l = length through which the heat flows [m] 传导举例
T1, T2 = temperature at boundaries [°C] 温度
45
2020年4月27日星期一
k
T2
Thermal Conductivity Examples 热传导举例
450
Al: k=170
400
350
Copper: k=400
300
Silicon: k=148
250
200
Stainless Steel: k=16
150
Carbon Steel: k=60
100
50
Acrylic: k=0.18
0
Thermal Conductivity Units are in W/mK.
46
2020年4月27日星期一
Conduction 传导
LED Chip
Plastic Lens
Body
Cathode Lead
Anode Lead
Heat Sink Slug
Q = Pd = Vf * If
= k * Ac (T - T )
1
2
l
=
1
RQ1-2
47
2020年4月27日星期一
(T1 - T2)
where RQ1-2 is thermal
resistance 热阻
Convection Equation 传导方程
Q = h * A (T1 - T2)
Q = heat flow [W]热量
h = convection coefficient [W/m2K]对流系数
A = surface area [m2]面积
T1 = temperature at surface [°C]表面温度
T2 = ambient temperature of air [°C]环境温度
48
2020年4月27日星期一
Heat Transfer and LEDs 热量传导及LED
LED Energy
Visible
Light
15%
Heat
85%
100 Watt GLS Incandescent Bulb
Energy
Heat
Losses
12%
Visible
Light 5%
How much heat is generated in LED?
Which heat transfer modes are most important? In LED, electrical
energy is converted to light and heat; Most of the energy is
converted to heat (Q), which is different from incandescent
bulbs;
Q has to be transferred to ambient to avoid damage to the
semiconductor die;
LED maximum junction temperature, specified in data sheets,
should not be exceeded;
LED产生多少热量?那种传热是最重要?对于LED,电能转化为光及热
。主要能来能够转化为热量Q,这是同白炽灯不同之处。LED最大的
节温在数据表中标明,一定不能超过。
For thermal analysis: 热量分析:
Q = Dissipated Power (Pd) = Pd = Vf * If 散失的能量
Heat transfer from a Luxeon LED emitter takes place primarily
through conduction
IR 83%
49
2020年4月27日星期一
Thermal Characteristics of LED’s 热特征
L
E
D
C
h
i
p
C
a
t
h
o
d
e
L
e
a
d
P
C
B
o
a
r
d
-
+
Heat
5mm Lamp
Circa 1970
If = 30 mA
RQ = 240
SuperFlux
Circa 1992
If = 70 mA
RQ = 120
LuxeonI/III/V
Circa 1997
If = 350 ~ 1000 mA
RQ = 15
Thermal Design Evolution of LED Packages
LED封装的热性能发展
50
2020年4月27日星期一
Thermal Characteristics of LED’s 热特征
TOPLED
MULTILED
If = 30 mA
RQ = 180
If = 50/50/70 mA
RQ = 180
Thermal model of
PowerTOPLED
Thermal Design Evolution of LED Packages
LED封装的热性能发展
51
2020年4月27日星期一
Thermal Resistance 热阻
Universal Definition of Thermal Resistance:热阻的一般定义
Q =
1
(T1 - T2)
RQ1-2
Electronic Circuit Analogy
RQ1-2 = (T1 – T2)
Q
52
2020年4月27日星期一
R=V/I
v
R
Node Temperature Formula 节点温度公式
T1 = T2 + (Pd)(RQ 1-2)
Example:
T1
= TJunction 节温
T2
= TBoard 板温
Pd
= Power Dissipated (W) = (If) * (Vf)
RQ1-2 = RQJunction-Board 节点-板
53
T1
= T2 + (Pd)(RQ 1-2)
TJ
= TB + (Pd)(RQ J-B)
2020年4月27日星期一
Total Thermal Resistance 总热阻
RQJ -A = RQ J - S + RQ S - B + RQ B -A
Pd = Vf * If
Tjunction
Epoxy环氧
RQJunction - Slug
Tslug
Di-electric
Layer
绝缘层
RQSlug - Board
Tboard
RQBoard -Ambient
Tambient
Metal-core PCB
Board - Heat Sink Interface 金属PCB
54
2020年4月27日星期一
Arrays - Parallel Thermal Resistances 矩阵并联热阻
Pd - Total Array
Total_Array_RQ 
LED_Emitter_RQ
N
Pd - Emitter
Tjunction
TJunction
RQJunction-Slug
Tslug
Tboard
=
Tambient
2020年4月27日星期一
LED LED
3
4
LED
N
…
TSlug
RQSlug-Board
…
TBoard
…
RQBoard-Ambient
TAmbient
55
LED LED
1
2
Steady State Thermal Modeling Tools稳态热模型
Node Equation 节点公式
Universal Definition of
Thermal Resistance
热阻
T1 = T2 + (Pd)(RQ 1-2)
T1-2
RQ1-2 =
Pd
Total Thermal Resistance is the RQ = RQ + RQ + RQ
Sum of Components
J -A
Thermal Resistance of an
Array (Note: All individual emitters in
the array are the same product)
56
2020年4月27日星期一
J-S
S-B
Total_Array_RQ 
B -A
LED_Emitter_RQ
N
Thermal Design Example 热设计
Determine the heat sink required for a Red Luxeon Star at a maximum
ambient temperature of 65°C:
确定红色Luxeon Star在65度环境温度时散热要求
1. Determine system thermal resistance RQ J -A: 热阻J-A
RQ J -A
= T J -A / Pd = (120°C-65°C)/1.3W = 40 °C/W where,
TJ
= 120 °C (As defined in data sheet参照数组表)
TA
= 65 °C
Pd
= Vf * If = 3.51V*0.385A = 1.3W (Assume highest Vf and If假设电压电流最大)
2. Determine heat sink thermal resistance RQ B-A: 热阻B-A
RQ J -A
= RQ J -B + RQ B -A
RQ B –A
= RQ J -A - RQ J -B
= 40 °C/W - 23 °C/W
(23°C/W from data sheet)
= 17 °C/W
3. Select 17°C/W Heat Sink 需要选择17度/瓦的散热器
57
2020年4月27日星期一
Determine RQ for heat sink 确认散热器
Tjunction节点温度
L1
RQ Junction - Slug
L2
System系统:
RQ J -A = 40 °C/W
Luxeon on MCPCB铝基板:
System
Heat
Sink
RQ Slug - Board
RQ L2 = 23 °C/W
RQ Board -Ambient
Heat Sink散热片:
RQ B -A = 17 °C/W
Tambient环境温度
58
Target目标:
2020年4月27日星期一
Heat Sink Examples 散热器举例
Heat Sink
Part Number
Type
RQ
(°C/W)
Dimension
Luxeon
2288B
Radial
25 (diam.) x 9mm
25.9
I
2292B
Radial
29 (diam.) x 9mm
23.4
I
2296B
Radial
32 (diam.) x 18mm
18.8
I
2298B
Radial
38 (diam.) x 18mm
16.3
I
374124B00035
Tape Attach
23x23x18mm
23.4
I
374424B00035
Tape Attach
27x27x18mm
20.3
I
374724B00032
Tape Attach
35x35x18mm
15.3
I
375024B00032
Tape Attach
40x40x18mm
12.2
I
500400B00000
Stamping
46x46x32mm
5
III/V
652453B12000
Extrusion
305x32x42mm
2.2
Line
637303B03000
Extrusion
76x76x57mm
1.84
Flood
766203B04000
Extrusion
102x102x32mm
1.79
6-Ring
601403B06000
Extrusion
152x154x44mm
0.98
12-Ring
59
2020年4月27日星期一
Heat Sink RQ vs. Area 散热器热阻与区域
RQ B -A vs. heat sink area 热阻R-A与散热器面积
Heat sink area / 25mm spaced emitter
Heat sink type: Flat Al heat spreader, 0.09in. thick
R Theta (board - ambient) vs Surface Area
Horizontal Plate
100
90
80
Theoretical Data
Air Flow
R Theta
70
Horizontal Plate
60
Vertical Plate
50
40
Vertical
Plate
30
20
10
Air Flow
0
0
60
5
10
Area
2020年4月27日星期一
15
[in2]
20
25
30
Derating current at higher Tambient
高环境温度下电流下降
White Luxeon Vf Bin L
Max dc current for white Luxeon VF Bin L emitter
350
Maximum dc curent - mA
300
Typical Tambient :
典型环境温度
Traffic Signal
- 85C
交通信号
Attic
- 45C
楼顶
Ceiling
- 40C
天花板
250
200
150
RJ-A = 40 C/W
RJ-A = 50 C/W
RJ-A = 60 C/W
RJ-A = 70 C/W
100
50
0
0
10
20
30
40
50
60
70
80
Ambient temperature - degrees C
Lowering the RQ enables running Luxeon at higher currents and at higher ambient temperatures
Higher flux per LED, and possible fewer LEDs!
61
2020年4月27日星期一
Dissipated Power (Pd) vs. Typical Required RQJ-A 热量与热阻要求
Emitter Type
Pd
Per Emitter
Overall
RQJ-S
RQJ-A
C/W)
C/W)
SuperFlux
0.2 W
125 - 155
200 – 600
SnapLED 150
0.45 W
60 – 75
150 - 200
1W
15-18
35 – 65
Luxeon III
3 to 4 W
13
15- 40
Luxeon V
5W
8
12 - 20
Luxeon
62
Emitter
2020年4月27日星期一
Temperature Measurement Check 温度测量
For Luxeon:
Use representative prototype: air flow, heat loads
Measure board temperature at emitter base
Measure emitters in center of array
Use Fine Gage TC Wire
.01” Diameter, or smaller, is suitable
J or K type is suitable
Example: Omega 5SC-TT-K-30-36
Wait for stabilization (45 mins)
Thermo Couple Temp. = Tboard
Designed heat sink
63
2020年4月27日星期一
Temperature Measurement Check 温度测试
Luxeon Rule of thumb: 经验值
Luxeon - Maintain Tboard below 100°C in all ambient conditions 所有的
环境温度下Tb小于100度
Luxeon III (700 ma DC) – Maintain Tboard below 85°C in all ambient
conditions 700mA时小于85度
Luxeon III (1000 ma DC) – Maintain Tboard below 70°C in all ambient
conditions 1000mA时小于70度
Luxeon V - Maintain Tboard below 75°C in all ambient conditions
5w小于75度
64
2020年4月27日星期一
Heat Sink Strategies 散热器策略
Emitter Type
Dissipated
Power
Typical Heat Sink
SuperFlux
0.2 W / emitter
Copper clad PCB
SnapLED 150
0.45 W / emitter
Cu leadframe
1 W / emitter
Flat Al heat spreader
3 to 4 W/ emitter
Flat Al heat spreader or
Fin heat sink
3.7 W / in2
Large flat or
Fin heat sink
5.0 W / emitter
Fin heat sink w/ large
surface area
Luxeon Star, Ring, Line
Luxeon III
Luxeon Flood
(dense spacing)
Luxeon V
65
2020年4月27日星期一
Thermal Design Resources 热量设计文件
Thermal Design Application Note -- AB05
SuperFlux – AB20-4
MG Chemicals
Electrically conductive adhesive (8331-14G)
Electrically isolating adhesive (832TC-450ML)
Aavid Thermalloy
Heat sinks, Tape, Adhesive, thermal grease (250)
66
2020年4月27日星期一
Thermal Overstress 过热问题
The effects of insufficient
thermal management
Thermal Overstress Failures 过热损坏
Broken wires 断线
Delamination of silicone encapsulent 硅分层
Lens yellowing 透镜黄化
Internal solder joint detachment内部焊点脱离
68
2020年4月27日星期一
Delamination 分层
Delamination (air-gap
between chip and
silicone)
Chip
Delaminated Luxeon
Heat-sink Slug
Good unit好单元
Note: Generally causes light output degradation and may affect viewing angle
but generally does not cause catastrophic failures 通常引起光通下降及视角变
化。但是不会引起致命错误
69
2020年4月27日星期一
Normal AlInGaP solder joint 通常AllnGaP焊接
Chip 芯片
Solder 焊盘(thickness
exaggerated for better clarity
为了看清楚有夸大)
Heat-sink Slug 散热片
70
2020年4月27日星期一
AlInGaP Internal solder joint detachment AllnGaP内部焊盘脱落
Detached Chip
Solder (thickness exaggerated
for better clarity)
Heat-sink Slug
Note: Generally causes open or intermittent LEDs通常结果是开放或间歇性发光
71
2020年4月27日星期一
Normal InGaN solder joint 通常InGaN焊接
InGaN die
Normal solder connections
Silicon sub-mount
72
2020年4月27日星期一
InGaN Internal solder joint detachment
InGaN die
Open solder connection
caused by reflow of solder
bump due to excessive heat
Silicon sub-mount
Shorted solder
connection caused by
reflow of solder bumps
due to excessive heat
Note: Could cause either opens or shorts or LED die to be electrically disconnected
from the back-to-back silicon zener diodes
73
2020年4月27日星期一
Summary总结
Manage the Tjunction by using thermal design 通过热设计控制节温
Apply heat transfer basics to minimize 应用热传导理论最小化J-B热阻
RQ Junction - Board
With Luxeon, use aluminum heat sinks with good air flow (either natural or
forced) 对于Luxeon,使用铝散热片
Always remember to measure your design
Results结论
Higher flux, possible fewer LEDs needed高光通量、少LED数量
Critical component of product liability taken care of
Operations at higher Tambient made possible
74
2020年4月27日星期一
Reflection Shape Basics 光学设计—反射器
Reflector Examples
For Spherical Reflectors, if the point source is placed at
the center of the sphere, the light rays will be directed
back to the source:
75
2020年4月27日星期一
If the point source is placed on the focal surface
instead, the reflected light rays will be horizontal. The
focal surface is defined as a spherical surface with
half the radius of the reflector:
Reflection Shape Basics
Reflector Examples
If the point source is placed at one of the two foci of
an Elliptical Reflector, all the reflected light rays will
point towards the other focus of the ellipsoid:
76
2020年4月27日星期一
The reflected light rays are also horizontal when
the point source is at the focal point of the
Parabolic Reflector
Reflection – Luxeon and Reflectors
Reflectors half angle 45 to 65 degrees
45°
Collector Efficiencies
Batwing
Lambertian
Lambertian (pointed into reflector)
Side Emitter
~ 20%
~ 40%
~ 98%*
~ 85%
Tungsten Bulb
~ 50%
Note: Lambertian is the closest we have to a point source.
*IP by CAD Research
77
2020年4月27日星期一
Refraction and TIR全反射
To calculate the condition of Total Internal Reflection
78
2020年4月27日星期一
Refraction and TIR
Calculating the condition of Total Internal Reflection:
2 = f = 90°
79
2020年4月27日星期一
Practical Lens Applications透镜应用
Lens can capture a half angle of 45°
Batwing - 80% of light in 45°
Lambertian – 60% of light in 45°
Convex Lens collimates the beam
Fresnel lens is special case of plano-convex lens
(much thinner)
80
2020年4月27日星期一
Refraction - Light Guides
TIR is used to control light in light guides. Here are two types of light guides that are commonly used with
Luxeon:
Planar/Sheet (Acrylic Sheet)
Cylindrical
Lightguide
Len
s
3mm
Thickness of lightguide vs coupling efficiency:
81
4.0mm
89%
3.5mm
87%
3.0mm
82%
2020年4月27日星期一
Coupling efficiency varies depending on
emitter selected, incident angle of light
entering light guide, distance from emitter to
light guide, and diameter of the light guide.
Optical efficiency is very sensitive to length of
light guide.
Refraction - Collimators
90
90
80
T yp ical Up p er Bou n d
T yp icalL ower Bou n d
70
60
50
40
30
Typical Upper Bound
20
0
-60 -40 -20
0
20 40
60
Angular Displacement (Degrees)
80
100
2020年4月27日星期一
-100
-80
-60
-40
-20
0
20
40
Angular Displacment (Degrees)
LuxeonTM Lambertian
80
70
60
50
40
30
20
10
Typical Lower Bound
10
LuxeonTM Batwing
82
100
100
Relative Intensity (%)
100
90
80
70
60
50
40
30
20
10
0
-100 -80
Relative Intensity (%)
Relative Intensity (%)
•Encapsulating Lens (Collimator) can capture 95%+可以捕
获95%的光线
•Limited collimation possibility due to size 最小化尺寸
•Limited choice : Fraen, Coil, Polymer Optic, and Lumileds
•Costs vary depending on performance and size 性能、尺
寸决定费用
60
80
100
0
-120 -100 -80
-60
-40
-20
0
20
40
60
80
Angular Displacement (Degrees)
LuxeonTM Side Emitter
100 120
Refraction – Collimator Attachment
•Attachment of collimator to Luxeon should be
done mechanically, using a holders that make
minimal contact with the optic.
•Contact from the holder to collimator should be
done furthest from the emitter and should be
minimized.
83
2020年4月27日星期一
Luxeon
Highest flux per LED family in the world
世界上高效率
Very long operating life (up to 100k hours)
非常长寿命
Available in White, Green, Blue, Royal Blue, Cyan, Red, RedOrange
and Amber
多种颜色
Lambertian, Batwing, Side Emitting or Collimated radiation patterns
兰伯体、蝙蝠型、侧发光、聚光等多种发光式样
More energy efficient than incandescent and most halogen lamps
比白炽灯、卤素灯更节能
Low voltage DC operated
Cool beam, safe to the touch
Instant light (less than 100 ns)
Fully dimmable
No UV
Superior ESD protection
84
2020年4月27日星期一
低压直流供电
冷光束、可安全触摸
瞬时点亮
可全调光
无紫外
提供防静电保护
 Highest operating junction
temperature available,
Industry leading lumen performance,
> 140 lumens in 6500K white
Highest Drive Currents—1500 mA
Lowest Thermal Resistance—9°C/W
Maintenance—50,000 hours life at
1000 mA with 70% lumen Maintenance
LUXEON K2 is available in
white, green, blue, royal blue,
cyan, red, redorange and amber.
85
2020年4月27日星期一
185°C 节温
140流明光输出
大电流
最低热阻
50000小时寿命,
1000mA 70%光衰
白、绿、蓝、
品蓝、青、红
橘红、琥珀色
Thifilm & ThinGaN tech. and Product
86
2020年4月27日星期一
OSRAM 三合一 G6TG
•package封装:
六管脚设计
•feature of the device 布置: additive mixture of color stimuli by
independent driving of each chip
通过独立驱动调节颜色配比,混合各种颜色
•wavelength波长:
• Forward Current工作电流
625 nm (red), 528 nm (true green),
470 nm (blue)
Lambertian Emitter (120°)
ThinFilm (red),
ThinGaN®true green, blue)
43 lm/W (red), 36 lm/W (true green),
11 lm/W (blue)
Red 70mA,Green、Blue 50mA
• Power consumption功率
Red 195mW,Green、Blue210mW
• Applications应用
indoor and outdoor displays
•viewing angle视角:
•technology工艺:
•optical efficiency光效:
室内外显示屏
87
2020年4月27日星期一
OSRAM 三合一 66C
•package封装:
•feature of the device 布置:
四管脚设计
additive mixture of color stimuli by
independent driving of each chip
通过独立驱动调节颜色配比,混合各种颜色
•wavelength波长:
• Forward Current工作电流
617 nm (red), 528 nm (true green),
470 nm (blue)
Lambertian Emitter (120°)
InGaAlP (red),
InGaN(true green, blue)
11 lm/W (red), 13 lm/W (true green),
3 lm/W (blue)
Red 70mA,Green、Blue 50mA
• Power consumption功率
Red 80mW,Green、Blue85mW
• Applications应用
indoor displays
•viewing angle视角:
•technology工艺:
•optical efficiency光效:
室内显示屏
88
2020年4月27日星期一
OSRAM Golden Dragon
•package封装:
white SMD package, 白色贴片封装
•typical Luminous Flux: 64 lm at 500 mA典型光通量
•typ. color temperature: 5600 K色温
•color reproduction index: 80显色性
•viewing angle视角:
Lambertian Emitter (120°)
•technology工艺:
ThinGaN®
•optical efficiency光效: 40 lm/W
• Power consumption
2瓦
• Thermal resistance热阻
15K/W
Junction/solder point Rth JS
89
2020年4月27日星期一
OSRAM OSTAR
•package封装:
OSTAR® - Lighting
•color coordinates:
white
•color temperature:
5600 K
•color reproduction index: 80
•viewing angle视角:
with optics: 120°, 60°
without optics:
Lambertian Emitter (120°)
•light emitting surface:
2.1 mm x 2.1 mm
•technology工艺:
ThinGaN®
•optical efficiency:
38 lm/W at 350 mA
• Luminous Flux
280lm(E2B)/430lm(E3B)
IF = 700 mA
• Power consumption功率:18W (1000mA,E2A)27W(E3A)
90
2020年4月27日星期一
OSRAM OSTAR
•package封装:
compact lightsource in multi chip on
board technology planar sealed 多芯片封装
•wavelength波长:
617 nm (amber), 525 nm (true green),
464 nm (blue)
•viewing angle视角:
Lambertian Emitter (120°)
•light emitting surface:
typ. 2.1 x 2.1 mm²发光面积
•technology工艺:
Thinfilm InGaAlP (amber),
ThinGaN®true green, blue)
•Luminance光通:
55lm amber, 85lm true green, 10.5lm blue
750 mA (A) / 500 mA (T, B)
•max. optical efficiency:
51 lm/W (amber), 86 lm/W (true green),
17 lm/W (blue) at 100 mA with lens
•mounting methode固定方式:
screw holes螺丝
•Thermal resistance Rth JB 热阻
5K/W
• Power consumption per Color
2.55/A 3.0/T 3.0W/B
• Optical efficiency without Lens
750 mA (A) / 500 mA (T, B)
25/A 25/T 6lm/W B
91
2020年4月27日星期一
未来发展趋势
92
2020年4月27日星期一
市场分析
93
2020年4月27日星期一