Studies on Capacity Fade of Spinel based Li
Download
Report
Transcript Studies on Capacity Fade of Spinel based Li
Studies on Capacity Fade of Spinel
based Li-Ion Batteries
by
P. Ramadass , A. Durairajan, Bala S. Haran,
R. E. White and B. N. Popov
Center for Electrochemical Engineering
Department of Chemical Engineering, University of South Carolina
Columbia, SC 29208
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Motivation
To characterize the capacity fade phenomena of Liion batteries.
To decrease the capacity fade on both positive and
negative electrode by optimizing the DC and pulse
charging protocol.
To develop mathematical model which will explain
the capacity fade in the spinel system.
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Objectives
To study the change in capacity of commercially
available spinel based Li-ion Cells (Cellbatt cells).
Study the performance of Li-ion cells under DC
charging at different rates.
Use impedance spectroscopy to analyze the change in
cathode and anode resistance with cycling.
Determine experimentally which electrode is more
important in contributing to capacity fade.
Do material characterization to study changes in
electrode structure with cycling.
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Capacity Fade may Result from
Overcharge Phenomena
Lithium deposition on negative electrodes
Electrolyte oxidation on positive electrode
Passivation (Interfacial film formation)
Self discharge
Electrolyte Reduction
Active Material Dissolution
Phase Change
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Physical Characteristics of Cellbatt
Lithium Ion Battery Electrodes
Characteristics
Positive Spinel Negative Carbon
Mass of the electrode material (g)
9.592
5.0865
Geometric area (both sides) (cm 2)
436
498
Loading on one side (mg/cm 2)
22
10.2
Thickness of the Electrode (m)
91
70
54.5 x 4
58.5 x 4
Dimensions of the electrode (cm x cm)
Cellbatt is a ‘Prismatic’ type cell
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Electrode Reactions
At anode
Li xC δLi
ch arg e
δe
d isch arg e
Li xδ C
At cathode
Li (M n 2 -γ Li γ )O 4
Li
(M
n
Li
)O
δLi
δe
δ
2-γ
γ
4
discharge
charge
Non-Stoichiometric Spinel
Cell Reaction
Li
L i (M n 2 -γ L i γ )O 4 L i x C
δ (M n 2-γ L i γ )O 4 L i x δ C
discharge
charge
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Charging Protocols
Constant current - Constant voltage
Total charging time fixed
Constant voltage
Charging done completely at constant voltage
Constant current - Constant voltage
Charging stopped when the current reaches a value
of 50 mA during the CV part
Charging done to different cut-off potentials
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Change in discharge capacity for Li-ion
cells charged to different potentials
4.0
4.3
3.8
Cel l V o l t ag e (V )
4.17
3.6
3.4
3.2
4.05
4.0
3.0
0.0
0.1
0.2
0.3
0.4
0.5
4.10
0.6
0.7
0.8
0.9
1.0
C ap aci t y (A h )
4 . 0 , 4 . 0 5 , 4 . 1 0 , 4 . 1 7 , 4 . 3 V P ro t o co l
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Experimental
Full Cell studies on CellBatt® Li-ion Cells
Galvanostatic charge-discharge
• 0.25 A, 0.5 A, 0.75 A, 1 A - (3.0-4.17 V)
Cyclic Voltammograms - 0.05 mV/s, 2.5-4.2 V
T-cell (half cell) studies
Glove Box - Disk electrodes – 1.2 cm
Counter, Reference electrodes – Li metal
Cyclic Voltammograms - 0.05, 0.1 and 0.2 mV/s, 3-4.5 V
vs. Li/Li+ for spinel and 0-1.2V vs. Li/Li+ for carbon
Impedance Analysis - 100 kHz ~ 1 mHz ±5 mV.
XRD studies of spinel electrode at various cycles.
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Charge curves for CC-CV Protocol
1.2
1 A
0.75 A
0.5 A
0.25 A
Cu rren t (A )
1.0
0.8
0.6
0.4
0.2
4.2
0.0
0.0
0.2
0.4
0.6
0.8
1.0
C h a rg e C u rv e c o m p a ri so n 1 0 0 c y c l e s
Po t en t i al (V )
3.9
C ap aci t y (A h )
3.6
1 A
0.75 A
0.5 A
0.25 A
3.3
3.0
0.00
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
0.25
0.50
C ap aci t y (A h )
0.75
1.00
Charge and Discharge curves for Liion Cell at various Cycles
0.6
4.17 V
0.5
4.1
0.4
3.9
0.3
1 C y cl e
3.7
0.2
V o l t ag e (V )
Cu rren t (A )
0.5 A
3.5
0.1
800
500
200
3.3
0.0
0.18
0.36
C/2 Rate
0.54
0.72
0.90
1.08
3.8
C ap aci t y (A h )
0 . 5 C P ro t o co l
Capacity Fade 15.4% for C/2 rate
C ell V o ltag e (V )
0.00
3.6
3.4
1 cy cle
3.2
Capacity Fade 19% for 1 C rate
800
0.0
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
500 200
3.0
C/2 Rate
0.1
0.2
0.3
0.4
0.5
0.6
C ap acity (A h )
0.7
0.8
0.9
1.0
Change in CC-CV Profiles with Cycling
1.2
4.2
1 A
0.8
0 .2 3 A h
C urre nt (A )
4.0
0.5 A
3.8
0 .2 5 A h
0.6
3.6
0 .5 6 A h
0.4
0 .5 2 A h
3.4
200 cycles
V olta ge (V )
1.0
4.17 V
0.2
3.2
500 cycles
0.0
3.0
0.0
0.2
0.4
0.6
0.8
1.0
C apacity (Ah)
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Nyquist plots for Cellbatt cell charged
at 0.5 A at different states of charge
Imag i n ary Z ( )
0.03
100 ( Cha r ge d)
35
20
10
0
0.02
0.01
0.00
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
R eal Z ( )
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Nyquist plots for Cellbatt cell charged
at 0.5 A during different cycles
0.03
Z Im ( )
0.02
F res h -0 -S O C
2 0 0 -0 -S O C
6 0 0 -0 -S O C
F res h -1 0 0 -S O C
2 0 0 -1 0 0 -S O C
6 0 0 -1 0 0 -S O C
0.01
0.00
0.24
0.25
0.26
0.27
0.28
0.29
0.30
Z R e ( )
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Nyquist Plots for Spinel and Carbon Electrodes
at Discharged state at Various Cycles
50
2 0 0 cy cl es
6 0 0 cy cl es
8 0 0 cy cl es
Z Im ( cm 2 )
40
30
20
10
100
2 0 0 cy cl es
6 0 0 cy cl es
8 0 0 cy cl es
90
0
30
Spinel
D i s ch arg e Im p ed an ce L i M n 2 O 4
60
ZRe
90
2
( cm )
120
80
150
70
Z Im ( cm 2 )
0
60
50
40
30
20
10
0
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Carbon
0
20
40
60
80
100
120
2
Z R e ( cm )
140
160
180
200
Cyclic Voltammograms of Spinel Electrode
after 800 Cycles at various Scan rates
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Cyclic Voltammograms of Carbon Electrode
after 800 Cycles at various Scan rates
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Cyclic Voltammograms of Spinel and Carbon
Electrodes at Different Cycles
Spinel
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Carbon
XRD Patterns of Spinel after Different
Charge-Discharge Cycles
111
400
311
8 0 0 cy cl es
511 440
531
331
In t en s i t y
222
4 0 0 cy cl es
Cycle
0
400
800
"a" (Ao )
8.17162
8.14257
8.12964
F re s h
P. G.. Bruce et al., J. Electrochem. Soc., 146, 3649 (1999).
10
25
40
2
55
70
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Conclusions
Varying the charging rate affects the overall capacity of
the cell.
Impedance studies reveal no significant increase in
resistance at both electrodes after 800 cycles.
XRD studies of Spinel electrode reveal the formation of
an additional phase with cycling.
Capacity fade in the case of Cellbatt cells can be
summarized as………
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Capacity Fade in Cellbatt
Li-ion cells
Secondary Active Material
Degradation(C6 & LiMn2O4)
Mn Dissolution
from Spinel
SEI layer attack on
Negative Electrode
HF formation
E. Wang et al.
Structural Degradation
of LiMn2O4
Accumulation of -MnO2 with Cycling
2L iM n 2 O 4 3 λ - M nO 2 (solid) + M nO (solution) + L i 2 O (so lution)
J.C.Hunter et al.
Salt Hydrolysis
P F6
Electrolyte Oxidation
(starts from 3.7 V)
H 2O P O F 2 H F
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina
Acknowledgements
Financial support provided in part by the
Department of Energy (DOE) is gratefully
acknowledged.
Thank you!
C enter for E lectrochem ica l E ngineerin g
U niversity o f S outh C arolina