Midship Section

Download Report

Transcript Midship Section

Crane Funnel Navigation Bridge Superstructure Hatch Deck

Stern Starboard Side Superstructure Port Side Deck Bow

Poop Deck Main Deck Forecastle Deck

THREE DIMENSIONAL HULL FORM

Transverse Section

Transverse Section

Stations

Body Plan

Horizontal Section

Waterline

Waterlines

Plan View

Vettical Sections

Buttocks

Buttocks

Profile View

Lines Plan

Offset Table

Cross Sectional Areas

GEOMETRIC DEFINITIONS

SHIP GEOMETRY

4.1 GEOMETRIC DEFINITIONS

L OA L WL L BP f T D BL AP FP B LWL BL f T D Deck Loaded waterline B/2 Loaded waterline Figure 4.1. General geometric definitions Deck LWL

STANDARD DEFINITIONS OF LENGTH

STANDARD DEFINITIONS OF LENGTH

Fore Perpendiculars (FP) :

A line drawn perpendicular to the waterline at the point where the forward edge of the stem intersects the summer load line.

Aft Perpendiculars (AP) :

A line perpendicular to the waterline either (1) where aft edge of the rudder post meets the summer load line or (2) in cases where no rudder post is fitted, the centerline of the rudder pintles is taken .

.

Midships

 The point midway between the forward and after perpendiculars

Centreplane (CL)

: It is a referance plan that divide the ship in longitudinal direction in the mid point of beam between port and starboard sides.

Baseline (BL) :

A fore-and-aft reference line at the upper surface of the flat plate keel at the centerline for flush shell-plated. Vertical dimensions are measured from a horizontal plane through the baseline, often called the molded baseline.

Midship Section : The section of the ship at this point by a plane normal to both the summer waterplane and the centreline plane of the ship is called the

midship section. It may not be the largest section of the ship. Unless

otherwise defined the

beam is usually quoted at amidships.

Sheer Line

the curvature of the deck in a longitudinal direction. It is measured between the deck height at midships and the particular point along the deck.

Deck Camber :

The rise or crown of a deck, athlwartship; also called round of beam. It can be 1/50 times of beam as a standard value.

Parallel Body (L P ) :

The amidship portion of a ship with in which the contour of the under water hull form is unchanged.

Kıç Siyer LWL BL LWL Şekil 4.2. Trimsiz ve trimli durum BL Baş

güverte sehimi CL tumblehome f levha omurga sintine dönümü radius kalkıntı T Şekil 4.3. Enine kesit karakteristikleri LWL BL

Şekil 4.4. Section lines

Bulbous bow area (A BL ) :

Bulbous area at center plane.

Bulbous bow section area (A BT ) :

Bulbous bow area at fore perpendicular. A BT A BL FP Figure 4.5Bulbousbow area definition figure

Y En kesitler Z Su hatları Batoklar X Şekil4.6. Üç boyutlu tekne formu ve kesit düzlemleri

İst

Ayna 13 14 15 16 17 18 19 19 ½ 0 ½ 1 2 3 4 7 8 5 6 9 10 11 12 20 WL1/2 0.5 m 4230 3500 2730 1990 1380 920 550 380 1580 1740 3140 4730 5900 6390 6400 6170 5680 4990 280 BL 0 m 2230 1400 750 330 130 60 40 40 370 860 2120 3780 4900 5070 4700 4000 3130 300 300 300 40 WL 1 1 m 6720 7100 7080 6880 6450 5820 5040 4220 3380 2530 1830 1320 900 700 1620 3820 3200 470 0 5920 530 7580 7710 7720 7570 7240 6700 6000 5120 4180 3220 2400 1730 1290 1090 1620 3830 5500 662 0 7270 900

Table 4.1.

Typical offset table Yarı Genişlikler WL 2 2 m WL 3 3 m WL 4 3.8 m 2140 WL 5 5 m 6650 WL 6 6 m 7550 6620 5770 4800 3780 2850 1960 1250 1050 600 2280 4630 6170 7120 7620 7820 7880 7895 7890 7840 7860 7250 1000 7000 6250 5320 4280 3260 2170 1140 610 3260 4250 5120 6440 7280 7730 7870 7900 7900 7900 7900 7900 7830 7540 7750 7430 6950 6225 5320 4190 2790 2000 7710 7820 7880 7900 7900 7900 7900 7900 7900 7900 7900 7900 7900 7900 1220 7480 6950 6180 5250 4150 2930 1650 970 6900 7170 7400 7730 7870 7900 7900 7900 7900 7900 7900 7900 7900 7800 320 Yükseklik Main Deck 5700 Yarı Genişlik 7350 5700 5724 5753 5783 5812 5841 5870 5885 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5900 1140 7670 7300 6730 6000 5100 3970 2650 1920 7540 7700 7810 7900 7900 7900 7900 7900 7900 7900 7900 7900 7900 7850 Yükseklik Küpeşte Yarı Genişlik 9450 9450 9474 9503 9536 9575 9623 9682 9715 9450 9450 9450 9450 9450 9450 9450 9450 9450 9450 9450 9450 9450 9450 9748 7900 7890 7730 7270 6410 5810 5090

Figure 4.7.

A typical lines plan

Form Coefficients

Midship Section Coefficient

B A M T C M

B A M

T

Waterplane Area Coefficient

B A W P L C W P

A W P L

B

Block Coefficient

B

L*B*T

L C B

 

L

B

T

A

Prismatic Coefficient

B W P C P

L

C P L

B

T

B

T L

 

A M

A M C B C M

-Displacement /Length Ratio

L

3 

C LBT

B

L

3 

C

B

B T L L

BLOCK COEFICIENT C B C B  L 0  W L A ( x ) dx L WL B WL T   L WL B WL T LCB  L 0  W L xA ( x ) dx L 0  W L A ( x ) dx

.

WATERPLANE AREA COEFICIENT (C WP ) A WL  L WL  B WL 0 ( x ) dx

C W P

L WL

 0

B W L

(

x

)

dx

L W L B W L A W L L W L B W L LCF

L WL

 0

xB W L

(

x

)

dx L WL

 0

B W L

(

x

)

dx

MIDSHIPS SECTION COEFFICIENT (C

M

)

C M  A M B WL T

C P

  

L W L A M

L W L B W L TC M

C B C M

PRISMATIC COEFICIENT (C P )

VERTICAL PRISMATIC COEFFICIENT (C VP ) C VP   A WL T   L WL B WL TC WP  C B C WL

Example 4.6.

Find the form coefficients of a 100 m long barge with corss section as given below. 10m 1m 1.5

m Midship cross section Area : Midship cross section area coefficient : Displacement Volume : A M  10  1  1 2  10  0 .

5  12 .

5 m 2 C M  A M B WL T  12 .

5 10  1 .

5  0 .

833   A M L WL  100  12 .

5  1250 m 3

Block coefficient Prizmatic coefficient Waterplane area coefficient: : C B   L WL B WL T  1250 100  10  1 .

5  0 .

833 C C P  : C B C M  0 .

833 0 .

833  1 WL  A WL L WL B WL  100  10 100  10  1

Örnek 4.3.

Find the form coefficients of a a barge with cross section as given below.

5m Blok coefficient : C B   L WL B WL T  L A M L B WL T  1 2 5 5 2 3 L  0 .

5 5 5 2 3 L Midship section coefficient : C M  A M B WL T  1 2 5 5 2 3 5 5 2 3  0 .

5

Prizmatic coefficient C P  : C B C M  1 Waterplane area coefficient: C WL  A WP L WL B WL  LB LB  1 Vertical prizmatic coefficient: C VP  C B C WL  0 .

5  0 .

5 1

Example 4.1.

Find the form coefficients of a cylinderical barge with length of L and radius of R with cross section as given below R Block Coefficent B   L WL B WL T  L A M L B WL T  R 2 * L  2 2 R * R * L   4 Midship Section coefficient : C M  R 2  A M B WL T  2 2 RR   4 Prizmatic coefficient C P  : C B C M   / 4  / 4  1

Waterplane area coefficient: C WL  A WL L WL B WL  L  2 R L  2 R  1 Vertical prizmatic coefficient C VP  C B C WL   / 4 1   4

Example 4.2 Calculate form coeffcients of the barge with length L with cross section as below.

R R 4R Block coefficient : C B   L WL B WL T  L A M L B WL T  2  R ( ( 4 R 4  2 R   4 RR R ) ) L RL    8  0 .

928 12 Midship section coefficient : C M  A M B WL T  2  R 2 ( 4 R 4  R  4 RR  R ) R    8  0 .

928 12 Prizmatic coefficient: C P  C B C M  1

Waterplane area coefficient Vertical prizmatic coefficent C WL  A WP L WL B WL  6 RL 6 RL  1 C VP  C B C WL  0 .

928 1  0 .

928

Example 4.5.

Calculate the form coefficients for a ship with the following characteristics.

Waterline length Waterline breadth Draught Prizmatic coefficient Loaded waterplane area Displacement tonnage Sea water density L WL B WL T C  P A WL  200 m 22 m 7 m 0.75

3500 m 2 23000 t 1.025 t/m 3

C B   L WL B WL T   L WL B WL T   23000 200  22  7  1 .

025  0 .

729 C M  C B C P  0 .

729 0 .

75  0 .

972 C WP  A WP L WL B WL  3500 200  22  0 .

795