Configuration Interaction in Quantum Chemistry
Download
Report
Transcript Configuration Interaction in Quantum Chemistry
Configuration Interaction in Quantum Chemistry
Jun-ya HASEGAWA
Fukui Institute for Fundamental Chemistry
Kyoto University
1
Prof. M. Kotani (1906-1993)
2
Contents
•
•
•
•
•
Molecular Orbital (MO) Theory
Electron Correlations
Configuration Interaction (CI) & Coupled-Cluster (CC) methods
Multi-Configuration Self-Consistent Field (MCSCF) method
Theory for Excited States
• Applications to photo-functional proteins
3
Molecular orbital theory
4
Electronic Schrödinger equation
• Electronic Schrödinger eq. w/ Born-Oppenheimer approx.
Hˆ ri , rA ri E ri for fixed rA
ri : Coordinates for electrons
rA : Coordinates for nucleus
• Electronic Hamiltonian operator (non-relativistic)
Hˆ Tˆ Vˆen Vˆee Vnn
elec
elec
nuc
Z Z
1 2 elec nuc Z A
1
i
A B
i 2
i
A ri rA
i j ri r j
A B rA rB
• Potential energy
– E = E rA parametrically depends on rA
• Wave function
– The most important issue in electronic structure theory
– ri parametrically depends on rA
5
Many-electronwave function
• Orbital approximation: product of one-electron orbitals
, ri ,
, rj ,
r r
1
1
2
2
i ri j r j
• The Pauli anti-symmetry principle
Pˆi j , ri ,
, rj ,
, rj ,
, ri ,
Pˆi j : Permutation operator
• Slater determinant
SD r1 , r2 ,
1 r1 1 r2
1 2 r1 2 r2
N!
N r1 N r2
1 rN
2 rN
N rN
Aˆ 1 r1 i ri N rN
Aˆ : Anti - symmetrizer
– Anti-symmetrized orbital products
– One-electron orbitals are the basic variables in MO theory
6
One-electron orbitals
• Linear combination of atom-centered Gaussian functions.
AO
i r Cr ,i
r
Cr ,i : MO coefficient, the variable in MO theory
r : Contracted atom - centered Gaussian functions
r ri , rA , lx , l y , lz g ri , rA , lx , l y , lz , d ,r
g : Primitive Gaussian function
d ,r : Contraction coefficient (pre - defined)
• Primitive Gaussian function
g ri , rA , lx , l y , lz , xi x A x yi y A y zi z A z exp a ri rA
l
l
l
2
a : Exponent of Gaussian function (pre - defined)
7
Variational determination of the MO coefficients
• Energy functional
E Hˆ hi J i , j K i , j
elec
elec
i
i j
hi : One - electron integrals, J i , j : Coulomb integral, K i , j : Exchange integral
hi i Tˆ Vˆen i
J i , j i j i j i* r1 *j r2 r1 r2 i r1 j r2 dr1dr2
1
K i , j i j ji i* r1 *j r2 r1 r2 j r1 i r2 dr1dr2
1
• Lagrange multiplier method
L E i , j i j i , j
i, j
i , j : Multiplier, Real symmetric, i , j = j ,i , when i are real function.
Constratint : Orthonormalization of i , i j i , j
8
Hartree-Fock equation
• Variation of MO coefficients
L
r Tˆ Vˆen i r j i j r j ji k ,i r i
Cr ,k
j
2
j r2
• Hartree-Fock equation
r1 r2
f r ,s Cs ,i S r ,s Cs ,i i ,k
c.c. 0
1
r r1 s r1
f r ,s r Tˆ Vˆen s r j s j r j j s
r r1 j r1
j
Sr ,s r s
r
j
s r2 j r2
s
r1 r2
1
• A unitary transformation that diagonalizes the multiplier matrix
T
mcan m,l U mi
i ,kU k ,l
Crcan
,i Cr ,mU m ,i
m
i ,k
• Canonical Hartree-Fock equation
can can
f r ,s Cscan
,i S r , s Cs ,i i
→Eigenvalue equation
Eigenvalue: Multiplier (orbital energy)
Eigenvector: MO coefficients
9
Restricted Hartree-Fock (RHF) equation
• Spin in MO theory: (a)spin orbital formulation → spatial orbital
rep. )
(b) Restricted
i i
i i
i i
(c) Unrestricted
i i
fr ,sCs,i Hartree-Fock
Sr ,sCs ,i i
• Restricted
(RHF)
equation for a closed shell (CS)
Nocc
system f r ,s r Tˆ Vˆen s 2 r j s j r j j s
j
RHF
RHF
Hˆ , Sˆ 2 0
Sˆ 2 CS
0 0 1 CS
• RHF wf
an eigenfunction
ofspin
a proper relation
RHF
RHF
ˆ , Sˆ operators:
Sˆz is
0
H
0
CS
CS
z
10
Electron correlations
− Introduction to Configuration Interaction −
11
Definition of “electron correlations” in Quantum Chemistry
• Electron correlations defined as a difference from Full-CI energy
E Corr E Full CI E HF
E HF : Energy of a single determinant (independent particle)
E Full CI : Full - CI energy (exact limit) for a set of one - electron basis functions
Restricted HF
• Two classes of electron correlations
Dynamical correlations
Static correlation
is dominant.
– Lack of Coulomb hole
Static (non-dynamical) correlations
– Bond dissociation, Excited states
– Near degeneracy
No explicit separation between dynamical
and static correlations.
Numerically Exact
Dynamical correlation
is dominant.
Fig. Potetntial energy curves of H2 molecule.
6-31G** basis set. [Szabo, Ostlund, “Modern
Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory”,
Dover]
Dynamical correlations: lack of Coulomb hole
• Slater det. : Products of one-electron function
ˆ r r r r
SD
i
i
i
j
1 1 1 2
→Independent particle model
• Possibility of finding two electrons at r1 , r2
case
1 r s r s
SD r1 , r2
P r1 , r2
i
1
1
i
1
: H2–like molecule
1
2 i r2 s2 i r2 s2
SD
r1 , r2
2
ds1ds2
i r1 i r2
2
2
i i
i i
No correlation between r1 and r2 : P r1 , r2 is a product of one - electron density.
– At r1 = r2 , P r1 , r2 0 Lack of Coulomb hole
–
Introducing dynamical correlations via configuration
interaction
• Interacting a doubly excited configuration
r1 , r2 C1 Aˆ i r1 s1 i r2 s2 C2 Aˆ a r1 s1 a r2 s2
• Some particular sets of C1 and C2 decrease P r1 ,r2 .
P r1 , r2 C1i r1 i r2 C2a r1 a r2
2
–
At r2 r1
lim P r1 , r2 C1 i r1 C2 a r1
r2 r1
2
2 2
C1C2 0
• Chemical intuition: Changing the orbital picture
p i xa
q i xa
x C2 C1
12
→ r1 , r2 C1 Aˆ p r1 s1 q r2 s2 Aˆ p r1 s1 q r2 s2
2
-
Left-right correlation
• in olefin compounds
2
2
p i xa
-x
=
q i xa
+x
=
x C2 C1
12
• Avoiding electron repulsion by introducing configuration
2
2
No correlations
included
=
-
Configuration
interaction
15
Angular correlation
• One-step higher angular momentum 2s 2 px
2
•
p i xa
-x
=
q i xa
+x
=
2
x C2 C1
12
Avoiding electron repulsion by introducing 2s 2 px configuration
2
=
2
-
Configuration
interaction
No correlations
included
16
Static correlations: improper electronic structure
• 2-electron system in a dissociating homonuclear diatomic molecule
a A B
i A B
A
B
• Changing orbital picture into a local basis: A , B
r1 , r2 Aˆ A r1 B r1 s1 A r2 B r2 s2
Aˆ A r1 s1 A r2 s2 Aˆ A r1 s1 B r2 s2
Ionic configuration: 2 e on A
Covalent config.: 2 e at each A and B
Aˆ B r1 s1 A r2 s2 Aˆ B r1 s1 B r2 s2
Covalent config.: 2 e at each A and B Ionic configuration: 2 e on B
– Each configuration has a fixed weight of 25 %.
– No independent variable that determines the weight for each configuration
when the bond-length stretches.
Introducing static correlations via configuration interaction
• Interacting a doubly excited configuration
CI C1 C2 ia,,ia
C1 C2 Aˆ A r1 s1 B r2 s2 Aˆ B r1 s1 A r2 s2
B r2
A r1
A
B
A r2
B r1
A
B
C1 C2 Aˆ A r1 s1 A r2 s2 Aˆ B r1 s1 B r2 s2
A r1 A r2
A
– Some particular C1 , C2
configurations.
B
A r1 A r2
A
B
change the weights of covalent and ionic
Configuration Interaction (CI)
and
Coupled-Cluster (CC)
wave functions
19
Some notations
• Notations
c
b
a
– Occupied orbital indices: i, j, k, ….
– Unoccupied orbital indices: a, b, c, …..
†
– Creation operator: aˆ a
Annihilation operator:aˆi
• Spin-averaged excitation operator
1 †
Sˆia
aˆa aˆi aˆa† aˆi
2
c
b
a
i
j
k
+
i
j
k
c
b
a
i
j
k
≡
c
b
a
i
j
k
– Spin-adapted operator (singlet)
• Reference configuration: Hartree-Fock determinant
0 0
• Excited configuration
ia Sˆia 0 , ia,,jb Sˆia, ,jb 0 Sˆia Sˆ bj 0 , ia,,jb,,kc Sˆia Sˆ bj Sˆkc 0
2
– Correct spin multiplicity (Eigenfunction of Sˆ and Sˆ z
operators)
20
Configuration Interaction (CI) wave function: a general form
• CI expansion: Linear combination of excited configurations
CI CHF HF Cia ia
i ,a
or
CI C0 0 Cia
a
i
i ,a
C
C
a ,b
i, j
ia,,jb
i , j ,a ,b
a ,b a ,b
i, j i, j
i , j ,a ,b
C
C
a ,b ,c
i , j ,k
i , j ,k ,a ,b ,c
CK K
ia,,jb,,kc
a ,b ,c a ,b ,c
i , j ,k i , j ,k
K
CK K
i , j ,k ,a ,b ,c
K
c
b
a
c
b
a
c
b
a
c
b
a
i
j
k
i
j
k
i
j
k
i
j
k
∙∙∙∙
CI Singles (CIS)
CI Singles and Doubles (CISD)
CI Singles, Doubles, and Triples (CISDT)
Full configuration interaction (Full CI)
– HF ,ia ,ia,,jb ,ia,,jb,,kc , K : Excited configurations
CHF ,Cia ,Cia, ,jb ,Cia, ,jb,k,c ,CK : Coefficients
– Full-CI gives exact solutions within the basis sets used.
21
Variational determination of the wave function coefficients
• CI energy functional
E CI Hˆ CI CI I Hˆ J CJ
I ,J
• Lagrange multiplier method
– Constraint: Normalization condition
CI CI 1
L CI Hˆ CI CI CI 1
ˆ
C I H J C J CI I J C J 1
I ,J
I ,J
I
• Variation of Lagrangian
L
CI I Hˆ K CI I K (c.c.) 0
CK
I
I ,J
• Eigenvalue equation
I
K Hˆ I CI E K I CI
I
E
22
Availability of CI method
– Difficulty in applying large systems
Percentage (%)
• A straightforward approach to the correlation problem starting
from MO theory
• Not only for the ground state but for the excited states
• Accuracy is systematically improved by increasing the excitation
order up to Full-CI (exact solution)
Full-CI
• Energy is not size-extensive
CISD
HO
HO
HO
HO
except for CIS and Full-CI
R ~ large
2
2
2
H2O
• Full-CI: number of configurations rapidly
increases with the size of the system.
– kα + kβ electrons in nα + nβ orbitals
determinants
→
n Ck
n Ck
– Porphyrin: nα = nβ =384 , kα =kβ =152
→ ~10221 determinants
2
H2O
H2O
H2O
Number of water molecules
Fig. Correlation energy per water molecule as
a percentage of the Full-CI correlation energy
(%) . The cc-pVDZ basis sets were used.
23
Coupled-Cluster (CC) wave function
• CI wf: a linear expansion
CI C0 0 Cia
i ,a
a
i
C
a ,b a ,b
i, j i, j
i , j ,a ,b
• CC wf: an exponential expansion
Cia, ,jb,k,c
a ,b ,c
i , j ,k
i , j ,k ,a ,b ,c
CC exp Cia Sˆia Cia, ,jb Sˆia, ,jb Cia, ,jb,k,c Sˆia, ,jb,k,c
i , j ,k ,a ,b ,c
i ,a (CCS) i , j ,a ,b
CC Singles
0
CI Singles and Doubles (CCSD)
CC Singles, Doubles, and Triples (CCSDT)
Cia Sˆia HF
CK K
K
0
∙∙∙∙
Single excitations
i ,a
1
a ,b ˆ a ,b
a b ˆ a ˆb
Double excitations
Ci , j Si , j Ci C j Si S j 0
2! i ,a
i , j ,a ,b
2
1
Cia, ,jb,k,c Sˆia, ,jb,k,c Cia C bj ,,kc Sˆia Sˆ bj ,,kc Cia C bj Ckc Sˆia Sˆ bj Sˆkc 0
i , j ,k
2! i , j ,k
3! i , j ,k
a ,b , c
a ,b ,c
Tripleexcitations
a ,b , c
Non-linear terms
24
Linear terms =CI
Why exponential?
• Size-extensive
No interaction
– Non interacting two molecules A and B
Hˆ A exp Sˆ A 0 A EA exp Sˆ A 0 A
Hˆ B
exp Sˆ 0
B
B
EB
exp Sˆ 0
– Super-molecular calculation
Hˆ
A
B
Hˆ A E A
Far away
ETot EA EB
B
exp Sˆ Hˆ exp Sˆ 0 0
E E exp Sˆ Sˆ 0 0
Hˆ B exp Sˆ A SˆB 0 A0 B Hˆ A exp Sˆ A exp SˆB 0 A0 B
A
A
↔ CI case
Hˆ A Hˆ B
Sˆ
A
Hˆ B EB
B
B
B
A
Sˆ A , SˆB 0
A B
B
A B
SˆB 0 A0B E A EB Sˆ A SˆB 0 A0B
• A part of higher-order excitations described effectively by products
of lower-order excitations.
– Dynamical correlations is two body and short range.
Solving CC equations
• Schrödinger eq. with the CC w.f.
ˆ
H E exp Cia Sˆia Cia, ,jb Sˆia, ,jb Cia, ,jb,k,c Sˆia, ,jb,k,c
i , j ,a ,b
i , j , k , a ,b ,c
i ,a
0 0
• CC energy: Project on HF determinant
E 0 Hˆ exp Cia Sˆia Cia, ,jb Sˆia, ,jb Cia, ,jb,k,c Sˆia, ,jb,k,c
i , j , a ,b
i , j ,k ,a ,b ,c
i ,a
0
• Coefficients: Project on excited configurations (CCSD case)
a†
a ˆa
a ,b ˆ a ,b
ˆ
ˆ
0 Si H E exp Ci Si Ci , j Si , j 0 0
i , j ,a ,b
i ,a
a ,b †
a ˆa
a ,b ˆ a ,b
ˆ
ˆ
0 Si , j H E exp Ci Si Ci , j Si , j 0 0
i , j ,a ,b
i ,a
– Non-linear equations.
– Number of variable is the same as CI method.
– Number of operation count in CCSD is O(N6), similar to CI method.
26
Hierarchy in CI and CC methods and numerical performance
– Higher-order effect was
included via the non-linear
terms.
• In a non-equilibrium
structure, the convergence
becomes worse than that
in the equilibrium
structure.
Error from Full-CI (hartree)
• Rapid convergence in the
CC energy to Full-CI
energy when the excitation
order increases.
Excitation order in wf.
SD
SDT
SDTQ SDTQ5 SDTQ56
CI法
~kcal/mol
“Chemical accuracy”
CC法
Fig. Error from Full-CI energy. H2O molecule with cc-pVDZ
basis sets.[1]
Table. Error from Full-CI energy. H2O at
equilibrium structure (Rref) and OH bonds
elongated twice (2Rref)). cc-pVDZ sets
were used.[1]
– Conventional CC method is
for molecules in
structure.
[1]“Molecularequilibrium
Electronic Structure
Theory”, Helgaker, Jorgensen, Olsen, Wiley, 2000.
27
cc-pVDZ
Statistics: Bond length
• Comparison with
the experimental
data (normal
distribution [1])
• H2, HF, H2O, HOF,
H2O2, HNC, NH3,
… (30 molecules)
• “CCSD(T)” :
Perturbative Triple
correction to CCSD
energy
cc-pVTZ
cc-pVQZ
HF
MP2
CCSD
CCSD(T)
CISD
[1]“Molecular Electronic Structure
Theory”, Helgaker, Jorgensen, Olsen,
Wiley, 2000.
Error/pm=0.01Å
Error/pm=0.01Å
Error/pm=0.01Å
28
Statistics: Atomization energy
Error from experimental value in kJ/mol (200 kJ/mol=48.0 kcal/mol)
•
•
Normal distribution
F2, H2, HF, H2O, HOF, H2O2, HNC, NH3, etc (total 20 molecules)
[1]“Molecular Electronic Structure Theory”, Helgaker, Jorgensen, Olsen, Wiley, 2000.
29
Statistics: reaction enthalpy
•
Normal
distribution
•
CO+H2→CH2O
HNC→HCN
H2O+F2→HOF+HF
N2+3H2→2NH3
etc.
(20 reactions)
•
Increasing
accuracy in both
theory and basis
functions,
calculated data
approach to the
experimental
values.
Error from experimental data in kJ/mol (80 kJ/mol=19.0 kcal/mol)
[1]“Molecular Electronic Structure Theory”, Helgaker, Jorgensen, Olsen, Wiley, 2000.
30
Multi-Configurational
Self-Consistent Field method
31
Beyond single-configuration description
• Single-configuration description
– Applicable to molecules in the ground state at near equilibrium structure
Hartree-Fock method
• Multi-configuration description
– Bond-dissociation, excited state, ….
– Quasi-degeneracy
→ Linear combination of configurations
to describe STATIC correlations
A
A
B
+
A
B
B
• Multi-Configuration Self-Configuration Field (MCSCF) w.f.
MCSCF
Config .
i
i Ci ,
i Aˆ 12
N
elec
– Ci : CI coefficients, i : MO coefficients Optimized
– Complete Active Space SCF (CASSCF) method
CI part = Full-CI: all possible electronic configurations are involved.
32
MCSCF method: a second-order optimizaton
• Trial MCSCF wave function is parameterized by
pq ,Ci
MCSCF exp ˆ
0 Pˆ C
1 C Pˆ C
0 : Reference CI state
Pˆ 1 0 0 : Projector
†
– Orbital rotation: unitary transformation exp ˆ , ˆ ˆ
ˆ pq Eˆ pq Eˆ qp
Eˆ pq a †p aq +a †p aq
p q
– CI correction vector
C i Ci
i
• MCSCF energy expanded up to second-order
Calc. E & E
1
2
1
(2) κ
κ
C
E
2
C
E trial
E trial
(1)
( 2) κ
0,
0 E E 0
pq
Ci
C
– At convergence(κ 0, C 0), E(1) 0
ˆ ˆ 0 0 : Generalized Brillouin theorem
F F 0 : MCSCF condition, i PH
E trial κ , C E (0) κ C E(1)
pq
qp
33
MCSCF applications to potential energy surfaces
• CI guarantees qualitative description whole potential surfaces
– From equilibrium structure to bond-dissociation limit
– From ground state to excited states
Soboloewski, A. L. and Domcke, W. “Efficient Excited-State Deactivation in Organic Chromophores and Biologically Relevant
Molecules: Role of Electron and Proton Transfer Processes”, In “Conical Intersections”, pp. 51-82, Eds. Domcke, Yarkony, Koppel,
Singapore, World Scientific, 2011.
34
Dynamical correlations on top of MCSCF w.f.
• MCSCF handles only static correlations.
– CAS-CI active space is at most 14 elec. in 14 orb.
→ For main configurations. → Lack of dynamical correlations.
• CASPT2 (2nd-order Perturbation Theory for CASSCF)
CASPT 2 1 Ct ,u ,v , x Eˆt ,u Eˆ v , x MCSCF
t ,u ,v , x
– Coefficients are determined by the 1st order eq.
– Energy is corrected at the 2nd order eq. ← MP2 for MCSCF
• MRCC (Multi-Reference Coupled-Cluster)
I
MRCC exp CK SˆK I CI
K
– One of the most accurate treatment for the electron correlations.
35
Theory for Excited States
36
Excited states: definition
• Excited states as Eigenstates
Hˆ I EI I
I 1, 2,
• Mathematical conditions for excited states
– Orthogonality
J I J ,I
– Hamiltonian orthogonality
J Hˆ I EI J , I
• CI is a method for excited states
– CI eigenequation
Hˆ k Ck , I EI k Ck , I I 1, 2,
– Hamiltonian matrix is diagonalized.
CJT,l H l ,k Ck , I J Hˆ I EI J , I
Hamiltonian orthogonality
– Eigenvector is orthogonal each other
C JT,l l k Ck , I J I J , I
Orthogonality
37
Excited states for the Hartree-Fock (HF) ground state
• From the HF stationary condition to Brillouin theorem
– Parameterized Hartree-Fock state as a trial state
0 Aˆ 12
HF exp ˆ 0 ,
N
– Unitary transformation for the orbital rotation
exp ˆ ,
ˆ † ˆ
ˆ pq Eˆ pq Eˆ qp
p q
Eˆ pq a †p aq +a †p aq
– HF energy expanded up to the second order
E trial E κ TE 1 2 κ TE κ ,
0
1
2
– Stationary condition
E trial
0 E(1) E( 2 )κ 0
pq
1
E p,q = 0 Eˆ pq Eˆ qp , Hˆ 0
At convergence
κ = 0, E(1) = 0
38
Excited states for the Hartree-Fock (HF) ground state
• CI Singles is an excited-state w. f. for HF ground state
– Brillouin theorem: Single excitation is Hamiltonian orthogonal to HF state
1
E p,q = 0 Eˆ pq Eˆ qp , Hˆ 0 0
0 Eˆia Hˆ 0 0
– CIS wave function
CIS Eˆ 0 C a
ai
i
a ,i
– Hamiltonian orthogonality & orthogonality
ˆ ˆ 0 C a 0,
0 Hˆ CIS 0 HE
ai
i
a ,i
0 CIS 0 Eˆ ai 0 Cia 0
a ,i
→ CIS satisfies the correct relationship with the HF ground state
• CI Singles and Doubles (CISD) does not provide a proper
excited-state for HF ground state
ˆ ˆ Eˆ 0 4 ia | jb 2 ib | aj 0
0 HE
bj ai
39
Excited states for Coupled-Cluster (CC) ground state [1]
• CC wave function (or symmetry-adapted cluster (SAC) w. f.)
CC exp CI SˆI HF
I
Excitation operators and coefficients:
ˆ C a Sˆ a
C
S
I I i i
I
i ,a
Cia, ,jb Sˆia, ,jb
i , j ,a ,b
• CC w.f. into Schrödinger eq.
CC Hˆ E CC 0
• Differentiate the CC Schrödinger eq.
CC Hˆ E CC CC Hˆ E SˆK CC c.c. 0
CK
• Generalized Brillouin theorem (GBT) → Structure of excited-state w.
f. CC Hˆ E Sˆ CC 0
I
[1]H. Nakatsuji, Chem. Phys. Lett., 59(2), 362-364 (1978); 67(2,3), 329-333 (1979); 334-342 (1979).
Symmetry-adapted cluster-Configuration Interaction (SAC-CI)[1]
• A basis function for excited states
ˆ ˆ CC ,
PS
I
Pˆ 1 CC CC
CC Hˆ E SˆI CC 0
GBT from CC equation
– Orthogonality
CC Pˆ SˆI CC 0
– Hamiltonian orthogonality
ˆ ˆ CC CC Hˆ E Sˆ CC 0
CC Hˆ PS
I
I
ˆ ˆ CC satidfies the conditions for excited - state w.f.
→ PS
I
• SAC-CI wave function
ˆ ˆ CC d
SAC CI PS
K
K
K
[1]H. Nakatsuji, Chem. Phys. Lett., 59(2), 362-364 (1978); 67(2,3), 329-333 (1979); 334-342 (1979).
SAC-CI(SD-R)compared with Full-CI
Accurate solution at Single and Double approximation→Applicable to molecules
Summary
43
CIS, CISD, SAC-CI (SD-R) are compared
HF/CIS
CISD
SAC/SAC-CI (SD-R)
Wave function
HF determinant
Up to Doubles
Electron correlations
No
Yes
Yes
Size-extensivity
Yes
No
Yes
Single excitations
Singles and doubles
Singles, doubles,
effective higher
excitations
Ground state
0
Sˆ 0 Sˆ S Sˆ D 0
CCSD level
exp Sˆ S Sˆ D 0
Excited state
Wave function
Sˆ S 0
Sˆ
0
Sˆ S Sˆ D 0
Sˆ
S
Sˆ D CC
Electron correlations
No
Not enough.
Near Full-CI result.
Size-extensivity
Yes
No
Yes (Numerically)
Qualitative description
for singly excited
states
No. Excitation energy
is overestimated
Quantitative
description for singly
excited states
O(N6)
O(N6)
Applicable targets
Number of operation ((N: O(N4)
# of basis function)
Hierarchical view of CI-related methods
EQ: Equilibrium IP: Independent Particle model
GS: Ground states Corr: Correlated model
EX: Excited states
Dynamical
correlations
CC
Corr
CC level
Full-CI
MRCC
SAC-CI
MP2
Perturbation 2nd order
CIS(D), CC2
CASPT2
Hartree-Fock
IP
GS EQ
CIS
EX
Excited states
Uncorrelated
Non-EQ
Applicability
to structures
MCSCF
Static
correlations
45
Practical aspect in CI-related methods
Maximum number of active orbitals
Fragment based approximated methods (divide & conquer, FMO, etc.) were excluded.
Nact: Number of active orbitals , MxEX: The maximum order of excitation
Nact
CCSD, SAC-CISD(MxEX in linear terms)
~1000
CCSDTQ (MxEX in linear terms)
~100
RASSCF
RASPT2[1]
32
15
Challenge: Speed up
2
4
Challenge
CASSCF, CASPT2[1]
10
16
Maximum number of excitations
MxEX
[1] P.-Å. Malmqvist, K. Pierloot, A. R. M. Shahi, C. J. Cramer, and L. Gagliardi, JCP 128, 204109 (2008).
46
End
47
Some important conditions for an electronic wave function
• The Pauli anti-symmetry principle
Pˆi j , ri ,
, rj ,
, rj ,
, ri ,
Pˆi j : Permutation operator
• Size-extensivity
Hˆ
Tot
Frag
I Hˆ I
(non - interacting limit, Hˆ I J = 0) E
• In some CI wave functions, E
Tot
• Cusp conditions
1
lim
rij 0
rij 0 r
ij ave 2
Frag
I EI
Tot
Frag
I EI
E
Coordinates
• Spin-symmetry adapted (for the non-relativistic Hamiltonian op.)
Sˆ 2 S S 1
Sˆz M
Hˆ , Sˆ 2 0
Hˆ , Sˆz 0
48