Využití nanotechnologií v sanační praxi - CLU-IN

Download Report

Transcript Využití nanotechnologií v sanační praxi - CLU-IN

http://www.clu-in.org/conf/tio/nano-iron/ 1
CL:AIRE 2010
Field scale application, case
studies from the EU (CZR)
Kvapil Petr, Černík Miroslav
(Lacinová L., Nosek J., Zbořil R.,)
AQUATEST a.s. – TUL – UPOL
http://www.clu-in.org/conf/tio/nano-iron/ 2
CL:AIRE 2010
Presentation objectives
To start discussion about:
 the risk management problem being addressed,
 the practical delivery and use of the technology,
 the regulatory approval process,
 the project outcomes and ongoing monitoring.
 the risks versus the benefits of iron nanoparticle use for remediation.
History of nanoiron (nZVI) in
First application of nZVI in ČR – in 2004
ČR
http://www.clu-in.org/conf/tio/nano-iron/ 3
CL:AIRE 2010

•Spolchemie
•source - Zhang
•GOLDER Ass.
•Laboratory tests
•Field tests
•ORP decrease
•pH increase
•CHC decrease
6 months
Period of nanoiron activity
reduction ~ 70 %
Kurivody site – first successfull
2005
FRACTURED BEDROCK FLOW
Tracer test
Blast fracturing
Low final concentrations
No rebound





20 000
PW-3
MW-2
MW-3
15 000
sum of ClU [ug/l]
remediation limit
2 500 ug/l
10 000
5 000
Zhang´s nZVI
20
09
08
6.
7.
.2
0
.1
2
20
08
18
07
.2
0
.1
1
1.
6.
7
20
0
14
.4
.
06
.2
0
.1
0
10
28
6
20
0
24
.3
.
20
05
5
5.
9.
20
0
17
.2
.
20
04
1.
8.
.1
.
20
0
4
0
14
http://www.clu-in.org/conf/tio/nano-iron/ 4
CL:AIRE 2010

PW-3
MW-3
f
GW
low
ct
dire
ion
Application well
- blast fracturing
- tracer test
- ZVI nanop. application
MW-2
http://www.clu-in.org/conf/tio/nano-iron/ 5
CL:AIRE 2010
Nanoiron applications - overview
Site
Contam.
Lab/pilot/
Remed.
Type of nZVI
Spolchemie 2004
Cl-Ethenes
L,P
ZHANG
Kuřívody 2005, 2006
Cl-Ethenes
L,P
ZHANG, RNIP
Piešťany 2005
Cl-Ethenes
L,P
ZHANG
Permon 2006
Cr6+
L,P
RNIP
Rožmitál 2007 – 2010
PCB
L,P
RNIP, NANOFER
Hluk 2007, 2008 (PRB)
Cl-Ethenes
L,P
RNIP, NANOFER
Hořice 2008, 2009
Cl-Ethenes
L, P, R
RNIP, NANOFER
Uherský Brod 2008
Cl-Ethenes
P
NANOFER
Písečná 2008, 2009
Cl-E, Cl-A
L, P, R
RNIP, NANOFER
Spolchemie 2010
Cl-E, Cl-M
L, P, R
NANOFER
Laboratory: AOX, U, As, nitrobenzene, acid mine waters, other CHC
Steps to FULL-SCALE
http://www.clu-in.org/conf/tio/nano-iron/ 6
CL:AIRE 2010

Feasibility approval - laboratory test




Regulatory approval process in CZR
Feasibility approval - field pilot test




Concentration test
Kinetic test
Geological & hydrogeological descriptions
Tracer tests
Applications of nanoiron
Full scale
http://www.clu-in.org/conf/tio/nano-iron/ 7
CL:AIRE 2010
Feasibility - Laboratory tests
Aim: Feasibility approval
 description: Batch tests:
system nanoparticles x water x soil
 2 phases:


1. phase – verification of efficient concentration
2. phase – verification of reaction rate
100
80
1,2-cis-DCE
%
60
TCE
40
PCE
20
0
0
2
4
6
g Fe0/l
8
10
http://www.clu-in.org/conf/tio/nano-iron/ 8
CL:AIRE 2010
Nano-iron project regullations

NZVI injections regulated by WATER law




„Ussualy“ Exception for irregular matters injection
Subject to decision of regional authorities
Ussualy field pilot test required
Usually the iron is more easily accepted than
soluble materials (oxidants or reductants)
Field system – from 2009

http://www.clu-in.org/conf/tio/nano-iron/ 9
CL:AIRE 2010
ZVIron
powder
Dispergator
Water
Water
PRETreatment
Removal
Oxygene
Contam.
Dosing
system

Surface
Modif.
Iron suspension
GW
head
•Advantage of initial high
reactivity
•Mobility and reactivity
control
Dry powder stored and
brought to the site
Reduced surface
oxidation by Oxygen
(pretreatment)
http://www.clu-in.org/conf/tio/nano-iron/ 10
CL:AIRE 2010
Case #1: PCB – Rozmital p.T.





20 years of hydraulic barrier
Former tarmacadam plant, DELOR 103
Recently contaminated soil waste deposit
Iron is feasible, but only nanoscale is efficient
No exception from Water law needed for this
site
Case #1: PCB – Rozmital p.T.
100%
80%
initial
4 days
60%
30 days
40%
20%
0%
17
26
31
49
48
44
96
74
70
Kinetics: Nanofer25 – indicative congeners
TODA (0.5g Fe)
Nanofer (0.5g Fe)
100%
90%
congeners
80%
70%
60%
50%
40%
30%
20%
10%
180
138
153
118
101
77, 110
70
66, 88, 95
74
96
41, 64
44
37, 42, 59
48
49
47, 75
52
22, 51
28
20, 33, 53
31
26
17
0%
16, 32
•Significant decrease after 4 days
•NanoFe active during whole period
•TODA x Nanofer similar
•Lower efficiency for more chlorinated
•Sorption questions?
5.8
•
•
Laboratory experiments
• kinetics for 4, 10, 30, 60 days
• concentration dependency
Indicative congeners x all
RNIP x Nanofer25S
15, 18
http://www.clu-in.org/conf/tio/nano-iron/ 11
CL:AIRE 2010
•
sum of congeners
7.0
concentration (ug/l)
http://www.clu-in.org/conf/tio/nano-iron/ 12
CL:AIRE 2010
Case #1: PCB – pilot test
shaft ring
6.0
J-6
5.0
4.0
3.0
2.0
1.0
0.0
X-08
XI-08
XII-08
I-09
datum
II-09
III-09
IV-09
http://www.clu-in.org/conf/tio/nano-iron/ 13
CL:AIRE 2010
Case #2 – Horice





Provided by MEGA and TUL
Tested nanoiron vs. Lactates
During first stages nanoiron more efficient, later
simillar efficiency
Decission of client to use nanoiron, no toxic
intermediate degradation product observed.
No Water law exception needed for this site
http://www.clu-in.org/conf/tio/nano-iron/ 14
CL:AIRE 2010
Case #2 – Horice – full scale system
• PCE, TCE, DCE, 70 mg/l
• 120 x 60 m
• I.stage (11/2008)
• 82 injection wells
• depth 10 m
• 300 kg nZVI
• II.stage
• 300 kg nZVI (11/2009)
http://www.clu-in.org/conf/tio/nano-iron/ 15
CL:AIRE 2010
Case #2 – Horice - PCE: ini, 3m, 6m, 9m
http://www.clu-in.org/conf/tio/nano-iron/ 16
CL:AIRE 2010
Case #2 – Horice - DCE: ini, 3m, 6m, 9m
http://www.clu-in.org/conf/tio/nano-iron/ 17
CL:AIRE 2010
Case #2 – Horice – I. stage economics
Direct push well network
– 80 w x 10 m x 40€ = 32 k€
nanoFe
- 300 kg x 5 x 23€ = 35 k€
Other (water, electricity, management)
- 30 k€
Monitoring (not part of remediation)
- 100 k€
TOTAL = 200 k€
II. Stage = 100 k€ (shared monitoring)
http://www.clu-in.org/conf/tio/nano-iron/ 18
CL:AIRE 2010
Case #3: Pisecna site






Former dangerous waste landfill
Fractured – bedrock area
CLE and CLA contamination
Drinking water sources in the neighbourhood
High reactivity needed for TCA degradation
No exception from Water law needed
http://www.clu-in.org/conf/tio/nano-iron/ 19
CL:AIRE 2010
Case #3 – Pisecna Comparative lab-tests
Comparative test for 5 nZVI types:

prepared by Zhang (2003)

RNIP (Toda)

NANOFER 25 – without surfactant

NANOFER 25S – modifyed by TWEEN

NANOFER …– modifyed by axilate
Tested properties:

aggregation - DLS

sedimentation – column tests

mobility - column tests

reactivity – kinetic tests, various nZVI concentration
3 real ground water
2 artifficaly mixed water
19
http://www.clu-in.org/conf/tio/nano-iron/ 20
CL:AIRE 2010
Case #3 – Pisecna – mobility tests
20
Case #3 – Pisecna – reactivity tests
PCE
TCE
1,20
c/c0
0,80
0,60
0,40
0,20
0,00
0
100
200
300
400
500
600
1,20
1,00
0,80
0,60
0,40
0,20
0,00
0
700
100
200
300
time (hrs)
NANOFER 25
NANOFER25S
AXILAT
TODA
NANOFER 25
ZHANG
1,00
0,80
0,60
0,40
0,20
0,00
NANOFER 25
100
200
300
400
time (hrs)
NANOFER25S
500
AXILAT
600
TODA
700
ZHANG
1,2-DCA
1,20
0
400
time (hrs)
NANOFER25S
1,2-DCE
c/c0
c/c0
http://www.clu-in.org/conf/tio/nano-iron/ 21
CL:AIRE 2010
c/c0
1,00
AXILAT
500
600
TODA
700
ZHANG
2,30
2,10
1,90
1,70
1,50
1,30
1,10
0,90
0,70
0
100
NANOFER 25
200
300
400
time (hrs)
NANOFER25S
AXILAT
500
600
TODA
700
ZHANG
21
Case #3 – Pisecna – pilot application
GEO-Group a.s. site
• RNIP x NANOFER25
•CHC concentrations similar
•Cl-Ethenes O.K. both (o)
•Cl-Ethanes TODA worse (∆)
1.20
RNIP_ethanes
RNIP_ethenes
NANOFER_ethanes
NANOFER_ethenes
XII-08
II-09
1.00
0.80
C/C0
http://www.clu-in.org/conf/tio/nano-iron/ 22
CL:AIRE 2010
•Geological conditions not equal
0.60
0.40
0.20
0.00
IX-08
X-08
XI-08
XI-08
date
I-09
I-09
III-09
III-09
Case #3 – Pisecna – full-scale
http://www.clu-in.org/conf/tio/nano-iron/ 23
CL:AIRE 2010

Pretreatment of technological water



Preparation nZVI slurry:




Contaminant removal
Oxygen removal
1000 kg dry powder iron NANOFER25N
(containers in N2 atmosphere)
diluting by field slurry dispergator to 5000 kg
of 20% suspension of nZVI NANOFER 25
and NANOFER 25S
On-site
Semi-automatic dosing system
23
http://www.clu-in.org/conf/tio/nano-iron/ 24
CL:AIRE 2010
Case #3 – Pisecna – Full scale system
ClU [%]
ClA [%]
AV-23
AV-22
AV-21
AV-20
AV-19
AV-18
AV-17
AV-16
AV-15
AV-14
AV-13
AV-12
AV-11
AV-10
AV-9a
AV-9
AV-8
AV-7
AV-6
AV-5
AV-4
AV-3
AV-2
AV-1
[%] initial concentration
http://www.clu-in.org/conf/tio/nano-iron/ 25
CL:AIRE 2010
Case #3 – Pisecna – full-scale
results in application wells
250,0
200,0
150,0
100,0
50,0
0,0
ClE [%]
25
Case #3 – Pisecna – economics
http://www.clu-in.org/conf/tio/nano-iron/ 26
CL:AIRE 2010






Estim. contaminants = 1 ton
Contam. Area = 2000 m3
Depth of contam.= 20 -35 mbs
nZVI plan = 1.3 tons
Number of wells = 30
Duration = 1 test + 2 full a.

cost: nZVI
 Wells
 Other
 Monitoring
= 140 k€
= 60 k€
= 40 k€
= 120 K€

TOTAL
= 360 K€
Case #4 – Spolchemie
http://www.clu-in.org/conf/tio/nano-iron/ 27
CL:AIRE 2010





Exception from Water law needed
Exploited cellars in contaminated area
CLE and CLM contamination
Clay, sand, gravel aquifer
Chemical factory
Date
23
16
.6
.20
10
10
20
10
.20
6.
.6
9.
10
10
10
20
10
.20
.20
.20
6.
.5
.5
.5
2.
26
19
12
10
10
10
20
10
.20
.20
.20
5.
.4
.4
.4
5.
28
21
14
10
10
10
20
10
.20
.20
.20
4.
.3
.3
.3
7.
31
24
17
Concentration (ug/L)
Date
Total ClM
RW5-31
6 000,0
AW5-7
3 000,0
2 000,0
1 000,0
0,0
23
16
.6
.2
01
0
0
20
10
.2
01
6.
.6
9.
0
0
0
20
10
.2
01
.2
01
.2
01
6.
.5
.5
.5
2.
26
19
12
0
0
0
20
10
.2
01
.2
01
.2
01
5.
.4
.4
.4
Total CHC
5.
28
21
14
0
0
20
10
.2
01
4.
.3
7.
31
0
0,0
.2
01
5 000,0
Concentration (ug/L)
10 000,0
.3
0
0
15 000,0
.2
01
.2
01
.2
01
20
10
AW5-7
24
.3
.6
.6
6.
20 000,0
17
23
16
9.
0
0
0
20
10
.2
01
.2
01
.2
01
6.
.5
.5
.5
2.
26
19
12
0
0
0
20
10
.2
01
.2
01
.2
01
5.
.4
.4
.4
5.
28
21
14
0
0
0
20
10
.2
01
.2
01
.2
01
4.
.3
.3
.3
7.
31
24
17
Concentration (ug/L)
http://www.clu-in.org/conf/tio/nano-iron/ 28
CL:AIRE 2010
Case #4 – Spolchemie - Pilot
Total ClE
RW5-31
RW5-31
14 000,0
12 000,0
10 000,0
8 000,0
6 000,0
4 000,0
2 000,0
0,0
AW5-7
Date
30 kg of pure iron injected
6 months period of monitoring
5 000,0
4 000,0
Reduction CHC – 30 – 40%
Reduction ClE – 20 – 30%
Reduction ClM – 70 – 80%
http://www.clu-in.org/conf/tio/nano-iron/ 29
CL:AIRE 2010
Case #4 – Spolchemie – full scale
Full scale:
•10 direct pushed wells
•3 rotary drilled wells
•3-12m bgs
•1000 kg of pure iron
•In 2-3 injection steps
•3 years
Case #5 – Combination – NZVI - lactate
HJ -9 08
RW -9
RW -3 7
C o nta m in an t
co mp o siti on
P CE (1 0 0% )
P CE (3 0 % ),
TC E (2 6% ),
DC E (3 9% )
c -DC E (8 2 % ),
V C ( 16 % )
Fi rst in je ctio n
L ac ti c ac id
(2 0 0 9)
NZ V I (2 0 09 )
L ac ti c ac id
(2 0 0 8)
2 00 kg
5 0 kg
2 00 kg
0 ,5%
0 ,2%
0 ,2%
L ac ti c ac id
(2 0 1 0)
L ac ti c ac id
(2 0 1 0)
NZ V I (2 0 09 )
2 00 kg
2 00 kg
3 0 kg
-- -- --
NA N O FE R 2 5 S
NA N O FE R 2 5 S
Q u an tity
In je cted co nc en tra tio n
NANOIRON
pilot test site
r
ne
a
le
yc
r
D
Application
MW-19 MW-3
Groundwater
flow direction
PW-3
S e con d in je ctio n
Q u an tity
MW-2
Us ed Garden
NZ VI
Application
PW-2
PJ-808
MW-1
Groundwater
flow direction
g/l
CH
C
20 m
g /l C
HC
100 m
g
LACTATE
pilot test site
y
od
riv
Ku
2,5
m
HJ-906
n
mo
Mi
http://www.clu-in.org/conf/tio/nano-iron/ 30
CL:AIRE 2010
W ell
/l C
HC
Source area
(DNAPL zone)
Legend:
Groundwater monitoring point
CHC concentration contourlines in mg/l
Scale bar:
0
20
40
60
80m
G
flo rou
w nd
di wa
re te
ct r
io
n
Case #5 - combination
TOTAL molar concentrations [C/C0]
http://www.clu-in.org/conf/tio/nano-iron/ 31
CL:AIRE 2010
10,00
1,00
Pure lactate
Pure nanoiron
RW-9
0,10
RW-37
HJ-908
0,01
Lactate -> Nanoiron
0,00
26.7.09 24.9.09 23.11.09 22.1.10 23.3.10 22.5.10 21.7.10 19.9.10 18.11.10
Time [date]
http://www.clu-in.org/conf/tio/nano-iron/ 32
CL:AIRE 2010
Perspectives of nanoiron

For contaminations types where high reactivity is needed
(for ex. PCB)

For sites where presence of toxic intermediates (VC) is
hazardous (also buildings and cellars)

In the proximity of used cellars or underground facilities
(where also the bad smell is undesirable)

In the proximity of water sources, the iron is not much
soluble, the Iron will not harm the quality of water (bad
smell, black color).

To enhance remediation proceess started by other
technologies.
UPOL
Radek Zbořil
Jan Filip
[email protected]
Geologická 4
15200, Praha 5
[email protected]
Svobody 26,
77146 Olomouc
http://www.clu-in.org/conf/tio/nano-iron/ 33
CL:AIRE 2010
AQUATEST a.s.
Petr Kvapil,
Miroslac Černík
TUL
Miroslav Černík,
Lenka Lacinová,
Jaroslav Nosek,
Štěpánka Klimková
[email protected]
Hálkova 6, Liberec
Thanks for your attention