Particle in a Box - Tufts University
Download
Report
Transcript Particle in a Box - Tufts University
Particle in a 1-Dimensional Box
Time Dependent Schrödinger Equation
2 d 2
V ( x) E
2m dx2
Region I
Region II
Region III
KE
PE
TE
Wave function is dependent on time and position function:
V(x)=∞
V(x)=0
V(x)=∞
1
( x, t ) f (t ) ( x)
Time Independent Schrödinger Equation
L
0
V(x)=0 for L>x>0
V(x)=∞ for x≥L, x≤0
Classical Physics: The particle can
exist anywhere in the box and follow
a path in accordance to Newton’s
Laws.
Quantum Physics: The particle is
expressed by a wave function and
there are certain areas more likely to
contain the particle within the box.
x
2 d 2 ( x)
V ( x) E
2
2m dx
Region I and III:
Applying boundary conditions:
2 d 2 ( x)
* E
2
2m dx
Region II:
2 d 2 ( x)
E
2m dx2
0
2
Finding the Wave Function
d 2 ( x) 2m
2 E
dx2
2 d 2 ( x)
E
2m dx2
This is similar to the general differential equation:
d 2 ( x)
k 2
2
dx
A sin kx B coskx
So we can start applying boundary conditions:
x=0 ψ=0
0 A sin 0k B cos 0k
x=L ψ=0
0 Asin kL
A0
where n=
Calculating Energy Levels:
2mE
k 2
2
k 2 2
E
2m
k 2h2
E
2m4 2
h
2
n 2 2 h 2
E 2
L 2m4 2
n2h2
E
8m L2
II A sin
nx
L
But what is ‘A’?
Normalizing wave function:
L
( A sin kx )
2
dx 1
0
L
x sin 2kx
A
1
4k 0
2
2
0 0 B *1 B 0
kL n
Our new wave function:
*
n
sin
2
L
2L
L
A
1
n
2
4
L
Since n=
2 L
A 1
2
*
A
2
L
Our normalized wave function is:
II
2
nx
sin
L
L
Particle in a 1-Dimensional Box
II
2
nx
sin
L
L
Applying the
Born Interpretation
II
2
2 nx
sin
L
L
n=4
n=3
E
x/L
2
n=4
E
n=3
n=2
n=2
n=1
n=1
x/L
Particle in a 2-Dimensional Box
Doing the same thing do these differential
equations that we did in one dimension we get:
A similar argument can be made:
2 2 2
2 2
2m x
y
E
X
( x, y) X ( x)Y ( y)
Y
In one dimension we needed only one ‘n’
But in two dimensions we need an ‘n’ for the x and y component.
Lots of Boring Math
Our Wave Equations:
2
2m
2
2m
2 X
Ex
x 2
2Y
E y
2
y
n x
2
sin x
Lx
Lx
n yx
2
sin
Ly
Ly
X ( x)Y ( y)
Since
n n
x y
n yx
nxx
4
sin
sin
Lx L y
Lx
Ly
n
x
2
nx
sin
L
L
For energy levels:
2
2
nh
En x
8m L2
2
h nx n y
8m Lx L y
2
En x n y
2
Particle in a 2-Dimensional Equilateral Triangle
Let’s apply some Boundary Conditions:
Types of Symmetry:
y 3x
v
E
( x, y) 0,
u
C3
0
w
u
w
w
v
C23
v
v
u
y 3 (a x)
u (2 / A) y
v (2 / A)( y / 2 3x / 2)
w (2 / A)( y / 2 3x / 2) 2
u v w 2
( x, y) 0,
u
w
a
So our new coordinate system:
σ2
σ1
y0
Defining some more variables:
u
v
A
w
u 0, v 2 w
v 0, w 2 u
w 0, u 2 v
Our 2-Dimensional Schrödinger Equation:
2 2 2
2m x 2 y 2
E
Solution: f (c1 x c2 y)
σ2
w
Substituting in our definitions of x and y in terms of u and v gives:
E f ( pu qv)
u
v
Where p and q are our nx and ny variables from the 2-D box!
Finding the Wave Function
Substituting gives:
So what is the wave equation?
P( A1 ) f ( pu qv) f ( pv qw) f ( pv qw)
It can be generated from a super position
of all of the symmetry operations!
f ( pv qu) f ( pw qv) f ( pu qw)
P( A2 ) f ( pu qv) f ( pv qw) f ( pv qw)
P( A1 ) E C3 C32 1 2 3
f ( pv qu) f ( pw qv) f ( pu qw)
f sin
So if:
And we recall our original definitions:
P( A2 ) E C3 C32 1 2 3
E f ( pu qv)
But what plugs into these?
u (2 / A) y
v (2 / A)( y / 2 3x / 2)
w (2 / A)( y / 2 3x / 2) 2
If you recall:
w
w
w
C2
u
w
v
u
v
u
C3
σ2
σ1
v
v
v
u
Substituting and simplifying gives:
q 3x (2 p q)y
p 3x (2q p)y
p ,q ( A1 ) cos
cos
sin
sin
A
A
A
A
( p q) 3x ( p q)y
cos
sin
A
A
w
σ2
3
w
u
u
So for example in C3 u v’s spot and v w’s spot
Continuing with the others:
E f ( pu qv)
1 f ( pv qu)
C3 f ( pv qw)
2 f ( pw qv)
C32 f ( pv qw)
3 f ( pu qw)
v
A1
q 0,1,2,3...
p q 1, q 2...
q 3x (2 p q)y
p 3x (2q p)y
p ,q ( A2 ) sin
sin
sin
sin
A
A
A
A
( p q) 3x ( p q)y
sin
sin
A
A
A
q 1,2,3...
2
Energy Levels:
p q 1, q 2...
Ep,q ( p2 pq q2 )E0
Plotting in Mathematica
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
2
0
6
0
p
4;
q
2;
0
2
0.25
0.5
,
x, 0, 1 ,
ColorFunction
p
5;
q
0;
0.75
;
Plot3D z
A
2
-2
3
A
4
3
2
0
1
0
0.25
0.5
p=1 q=0
y, 0, A , PlotPoints
100, Mesh
False, BoxRatios
0.75
1
2
1, A, .4 , ViewPoint
0.000, 1.500, 3.384 ,
Hue
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
;
ContourPlot z
0
0
0.2
2
,
0.4
x, 0, 1 ,
0.6
0.8
1
y, 0, A , ContourLines
0
0.2
0.4
False, PlotPoints
0.6
0.8
100, Contours
1
20, ColorFunction
Hue
A1
2
A2
2