Transcript ppt format
Introduction to ROBOTICS
Manipulator Dynamics
Dr. Jizhong Xiao
Department of Electrical Engineering
City College of New York
[email protected]
The City College of New York
1
Outline
• Homework Highlight
• Review
– Kinematics Model
– Jacobian Matrix
– Trajectory Planning
• Dynamic Model
– Langrange-Euler Equation
– Examples
The City College of New York
2
Homework highlight
• Composite Homogeneous Transformation
Matrix Rules:
– Transformation (rotation/translation) w.r.t.
(X,Y,Z) (OLD FRAME), using premultiplication
– Transformation (rotation/translation) w.r.t.
(U,V,W) (NEW FRAME), using postmultiplication
The City College of New York
3
Homework Highlight
• Homogeneous Representation
– A frame in
R
3
space
P( px , py , pz )
z
n
F
0
s
a
0
0
nx
P
ny
1 nz
0
sx
ax
sy
ay
sz
az
0
0
px
py
pz
1
a (z’)
s (y’)
n (X’)
y
x
The City College of New York
4
Homework Highlight
– Assign Y ( Z X ) / Z X to complete the righthanded coordinate system.
– The hand coordinate frame is specified by the O n
geometry of tool. Normally, establish Zn along the
direction of Zn-1 axis and pointing away from the
robot; establish Xn so that it is normal to both Zn-1
and Zn. Assign Yn to complete the right-handed
Z3
Z1
system. Z0
Joint 3
i
i
i
i
i
Y0
O3
Y1
X3
d2
Joint 1
O0
X0
O 1 X1
O 2 X2
Joint 2
Y2
a
a
0
1
The City
College of New
York
5
Review
• Steps to derive kinematics model:
– Assign D-H coordinates frames
– Find link parameters
– Transformation matrices of adjacent joints
– Calculate kinematics matrix
– When necessary, Euler angle representation
The City College of New York
6
Review
• D-H transformation matrix for adjacent coordinate
frames, i and i-1.
– The position and orientation of the i-th frame coordinate
can be expressed in the (i-1)th frame by the following 4
successive elementary transformations:
T i 1 T ( z i 1 , d i ) R ( z i 1 , i )T ( x i , a i ) R ( x i , i )
i
C i
S i
0
0
C i S i
S i S i
C iC i
S iC i
S i
C i
0
0
The City College of New York
aiC i
ai S i
di
1
7
Review
• Kinematics Equations
– chain product of successive coordinate transformation
i
matrices of T i 1
– T 0n specifies the location of the n-th coordinate frame
w.r.t. the base coordinate system
T 0 T 0 T1 T n 1
n
Orientation
matrix
1
R 0n
0
2
n
n
P0 n
1 0
s
a
0
0
n
P0
1
Position
vector
The City College of New York
8
Jacobian Matrix
1 Forward
x
2
y
3
z
Kinematics
4
5
Inverse
6
Joint Space
Task Space
1
2
3
4
5
6
Jacobian
Matrix
x
y
z
x
y
z
Jaconian Matrix: Relationship between joint
space velocity with task space velocity
The City College of New York
9
Jacobian Matrix
x
y
q 1
z dh ( q ) q 2
x dq 6 n
y
q n n 1
z
dh ( q )
J
dq 6 n
Jacobian is a function of
q, it is not a constant!
h1
q
1
h2
q
1
h
6
q 1
The City College of New York
h1
q 2
h2
q 2
h6
q 2
h1
q n
h2
q n
h6
q n 6 n
10
Jacobian Matrix
• Inverse Jacobian
J 11
J 21
Y J q
J 61
J 12
J 22
J 62
J 16
J 26
J 66
q 1
q
2
q 3
q 4
q
5
q 6
1
q J Y
q5
q1
• Singularity
–
–
–
–
rank(J)<min{6,n},
Jacobian Matrix is less than full rank
Jacobian is non-invertable
Occurs when two or more of the axes of the robot
form a straight line, i.e., collinear
– Avoid it
The City College of New York
11
Trajectory Planning
• Trajectory planning,
– “interpolate” or “approximate” the desired path by a class of
polynomial functions and generates a sequence of time-based
“control set points” for the control of manipulator from the
initial configuration to its destination.
– Requirements: Smoothness, continuity
– Piece-wise polynomial interpolate
– 4-3-4 trajectory
h1 ( t ) a 14 t a 13 t a12 t a 11 t a10
4
3
2
h 2 ( t ) a 23 t a 22 t a 21 t a 20
3
2
h 3 ( t ) a 34 t a 33 t a 32 t a 31 t a 30
4
3
2
The City College of New York
12
Manipulator Dynamics
• Mathematical equations describing the
dynamic behavior of the manipulator
– For computer simulation
– Design of suitable controller
– Evaluation of robot structure
– Joint torques
Robot motion, i.e.
acceleration, velocity, position
The City College of New York
13
Manipulator Dynamics
• Lagrange-Euler Formulation
d
(
L
)
L
i
dt q i
qi
– Lagrange function is defined
L K P
• K: Total kinetic energy of robot
• P: Total potential energy of robot
• q i : Joint variable of i-th joint
• q i: first time derivative of q i
• i : Generalized force (torque) at i-th joint
The City College of New York
14
Manipulator Dynamics
• Kinetic energy
k
1
2
– Single particle:
2
– Rigid body in 3-D space with linear velocity (V) , and
angular velocity ( ) about the center of mass
1
1
T
T
k mV V I
2
2
( y 2 z 2 ) dm
I xydm
xzdm
mv
xydm
( x z ) dm
2
2
yzdm
2
2
( x y ) dm
xzdm
yzdm
– I : Inertia Tensor:
I xx
• Diagonal terms: moments of inertia
• Off-diagonal terms: products of inertia I xy
The City College of New York
( y z ) dm
2
2
( xy ) dm
15
Velocity of a link
xi
yi
i
A point fixed in link i and expressed w.r.t. the i-th frame
ri
zi
yi
zi
1
ri
z0
Same point w.r.t the base frame
i
xi
i
r0 T 0 ri (T 0 T1 Ti 1 ) ri
i
i
i
1
2
i
i
r0
y0
x0
The City College of New York
16
Velocity of a link
Velocity of point
ri
i
expressed w.r.t. i-th frame is zero
ri 0
i
i
Velocity of point ri expressed w.r.t. base frame is:
Vi V
i
0
d
dt
r
i
0
d
dt
1
2
i
(T 0 T1 T i 1 ) ri
i
1 2
i
i
1 2
i
i
T0 T1 T i 1 ri T 0 T1 T i 1 ri
i
1 2
i
i
i i
T 0 T1 Ti 1 ri T 0 ri (
j 1
T0
i
q j
The City College of New York
i
q j ) ri
17
Velocity of a link
Rotary joints, q i i
•
T
i
i 1
T i 1
i
qi
C i
S i
0
0
C i S i
S i S i
C iC i
S iC i
S i
C i
0
0
S i
Ci
0
0
T i 1
C iC i
S iC i
C i S i
S i S i
0
0
0
0
i
qi
Q iT
i
i 1
0
1
0
0
1
0
0
0
0
0
0
0
aiC i
ai S i
di
1
ai S i
aiC i
0
0
0 C i
0 S i
0 0
0 0
0
1
Qi
0
0
1
0
0
0
0
0
0
0
C i S i
S i S i
C iC i
S iC i
S i
C i
0
0
The City College of New York
0
0
0
0
aiC i
ai S i
di
1
18
Velocity of a link
• Prismatic joint, q i d i
T
i
i 1
C i
S i
0
0
T i 1
i
qi
0
0
0
0
C i S i
S i S i
C iC i
S iC i
S i
C i
0
0
0
0
0
0
0
0
0
0
0
0
1
0
aiC i
ai S i
di
1
T
i
i 1
qi
0
0
Qi
0
0
Q iT
The City College of New York
0
0
0
0
0
0
0
0
0
0
1
0
i
i 1
19
Velocity of a link
The effect of the motion of joint j on all the points on link i
T0
i
q j
T 01T1 2 T j j21Q j T j j1 T i i 1
0
T0
i
U ij
Vi V0
i
d
dt
q j
r0
i
T 0 j 1Q j T ji1
0
d
dt
i
i
j 1
ji
ji
ji
ji
for
(T 0 T1 Ti 1 ) ri (
2
for
for
i
1
for
T0
i
q j
The City College of New York
i
i
i
q j ) ri ( U ij q j ) ri
j 1
20
Kinetic energy of link i
• Kinetic energy of a particle with differential mass dm in link i
dK i
1
2
2
2
2
( x i y i z i ) dm
1
2
i
i
i
i T
Tr U ip q p ri ( U ir q r ri )
2
r 1
p 1
1
T
trace (V iV i ) dm
dm
i i
i iT
T
Tr U ip ri ri U ir q p q r dm
2
p 1 r 1
1
i i
i
iT
T
Tr U ip ( ri dmr i )U ir q p q r
2
p 1 r 1
1
The City College of New York
n
Tr ( A )
a
ii
i 1
21
Kinetic energy of link i
i i
i iT
T
K i dK i Tr U ip ( ri ri dm )U ir q p q r
2
p 1 r 1
1
x i 2 dm
x i y i dm
i iT
I i ri ri dm
x i z i dm
x dm
i
I xx
I yy I zz
2
I xy
x y dm x z dm x dm
y dm y z dm y dm
y
z
dm
z
dm
z
dm
y
dm
z
dm
dm
i
i
i
i
i
i
i
i
2
i
2
i
i
i
I xy
I xx I yy I zz
2
I xz
I yz
m i xi
mi yi
i
i
i
I xz
I yz
I xx I yy I zz
2
mi zi
m i xi
mi yi
mi zi
mi
The City College of New York
xi
yi
i
ri
zi
1
xi
1
mi
x dm
i
Center of mass
Pseudo-inertia
matrix of link i
22
Manipulator Dynamics
• Total kinetic energy of a robot arm
n
K
K
i
i 1
1
2
1
i i
i iT
T
Tr U ip ( ri ri dm )U ir q p q r
p 1 r 1
n
2
i 1
Tr (U
n
i
i
T
ip
I iU ir ) q p q r
i 1 p 1 r 1
Scalar quantity, function of
qi
and
q i
, i 1, 2 , n
I i : Pseudo-inertia matrix of link i, dependent on the mass
distribution of link i and are expressed w.r.t. the i-th frame,
Need to be computed once for evaluating the kinetic energy
The City College of New York
23
Manipulator Dynamics
• Potential energy of link i
i
r0 : Center of mass
w.r.t. base frame
Pi m i g r0 m i g (T 0 ri )
i
i
i
i
ri : Center of mass
w.r.t. i-th frame
g ( g x , g y , g z ,0 )
g 9 . 8 m / sec
2
g : gravity row vector
expressed in base frame
• Potential energy of a robot arm
n
P
i 1
n
Pi
[ m i g (T0 ri ) ]
i
i
Function of
i 1
The City College of New York
qi
24
Manipulator Dynamics
• Lagrangian function
L K P
1
2
i
n
d
(
L
dt q i
)
Tr (U
n
i
i 1
i
j i k 1
i
i i
0 i
r )
i 1
L
qi
n
jk
T
I U ik ) q j q k
ij i
j 1 k 1
j
Tr (U
m g (T
n
I jU
T
ji
) qk
j
j
U
Tr ( q
j i k 1 m 1
jk
I jU
T
ji
) q k q m
m
n
m j gU ji r j
j
ji
The City College of New York
25
Manipulator Dynamics
The effect of the motion of joint j on all the points on link i
U ij
T
i
0
q j
T 0 j 1Q j T ji1
0
ji
for
ji
for
The interaction effects of the motion of joint j and joint k
on all the points on link i
U ij
q k
U ijk
T 0 j 1Q j T jk11Q k T ki1
k 1
j 1
i
T 0 Q k T k 1 Q j T j 1
0
i j
The City College of New York
ik j
i jk
or
ik
26
Manipulator Dynamics
• Dynamics Model
n
i
D
n
ik
qk
k 1
n
h
ikm
q k q m C i
k 1 m 1
n
Tr (U
D ik
jk
I jU
T
ji
)
j max( i , k )
n
Tr (U
h ikm
jkm
I jU
T
ji
)
j max( i , k , m )
n
C i m j gU ji r j
j
ji
The City College of New York
27
Manipulator Dynamics
• Dynamics Model of n-link Arm
D ( q ) q h ( q , q ) C ( q )
D 11
D
D n 1
D1 n
D nn
h1
h ( q , q )
h n
C1
C (q )
C n
The Acceleration-related Inertia
matrix term, Symmetric
The Coriolis and Centrifugal terms
The Gravity terms
1
Driving torque
applied on each link
n
The City College of New York
28
Example
Example: One joint arm with point mass (m)
concentrated at the end of the arm, link
length is l , find the dynamic model of the
robot using L-E method.
L
m
Y0
Set up coordinate frame as in the figure
l
0
1
r1
0
1
Y1
g [ 0 , 9 .8,0 ,0 ]
X1
1
X0
C 1
S1
1
1 1
r0 T 0 r1
0
0
S1
0
C 1
0
0
1
0
0
0
0 1
r
1
0
1
The City College of New York
29
Example
C 1
S1
1
1 1
r0 T 0 r1
0
0
S1
0
C 1
0
0
1
0
0
0
0 1
r
1
0
1
L
m
Y0
Y1
l S1
l
C
d 1 1
1
1
1 1
V1 r0
T 0 r1 Q 1T 0 r1
0
dt
0
The City College of New York
X1
1
X0
30
Example
Kinetic energy
dK
l S1
l
C
1
1
l S 1 l C 1 0
K Tr (
0
2
0
2
l 2 (S1 ) 2
l S1 C 1
2
2
2
l
S
C
l
(
C
)
1
1
1
1
Tr (
2
0
0
0
0
1
1
2
T
Tr (V1V1 ) dm
2
0 )1 dm
0
0
0
0
0
0 2
) 1 m
0
0
1 2 2
2
[ l ( S 1 ) l ( C 1 ) ]m l m 1
2
2
2
2
2
2
The City College of New York
31
Example
• Potential energy
P mg (T r )
1
0 1
m 0
9 .8 m l S 1
9 .8
0
C 1
S1
0
0
0
S1
0
C 1
0
0
1
0
0
0 l
0 0
0 0
1 1
• Lagrange function
L K P
1
2
2
l m 1 9 .8 m l S 1
2
• Equation of Motion
L
L
1
(
)
dt 1
1
d
d
dt
2
2
( l m 1 ) 9 . 8 m l C 1 l m 1 9 . 8 m l C 1
The City College of New York
32
Example: Puma 560
• Derive dynamic equations for the first 4 links of
PUMA 560 robot
The City College of New York
33
Example: Puma 560
•
•
Set up D-H Coordinate frame
Get robot link parameters
Joint i
1
2
3
4
5
6
i
1
2
3
4
5
6
i
-90
0
90
-90
90
0
ai(mm)
0
431.8
-20.32
0
0
0
di(mm)
0
-149.09
0
433.07
0
56.25
•
Get transformation matrices T i i 1
•
Get D, H, C terms
The City College of New York
34
Example: Puma 560
•
Get D, H, C terms
n
D ik
Tr (U
jk
I jU
T
ji
n 3; i 1, 2 ,3
)
j max( i , k )
T
T
T
D 11 Tr (U 11 I 1U 11 ) Tr (U 21 I 2U 21 ) Tr (U 31 I 3U 31 )
T
T
D 12 D 21 Tr (U 22 I 2U 21 ) Tr (U 32 I 3U 31 )
T
D 13 D 31 Tr (U 33 I 3U 31 )
T
T
D 22 Tr (U 22 I 2U 22 ) Tr (U 32 I 3U 32 )
T
D 23 D 32 Tr (U 33 I 3U 32 )
T
D 33 Tr (U 33 I 3U 33 )
The City College of New York
35
Example: Puma 560
•
Get D, H, C terms
n
hi
h1
h ( q , q )
h n
n
h
ikm
q k q m
k 1 m 1
n
Tr (U
h ikm
I U
jkm j
T
ji
)
j max( i , k , m )
2
h1 h111 q1 h112 q1 q 2 h113 q1 q 3 h121 q1 q 2 h122 q 2
h123 q 2 q 3 h131 q 3 q1 h132 q 3 q 2 h133 q 3
T
2
2
T
T
h111 Tr (U 111 I 1U 11 ) Tr (U 211 I 2U 21 ) Tr (U 311 I 3U 31 )
T
T
T
T
h113 Tr (U 313 I 3U 31 )
T
T
h123 Tr (U 323 I 3U 31 )
h112 Tr (U 212 I 2U 21 ) Tr (U 312 I 3U 31 )
h121 Tr (U 221 I 2U 21 ) Tr (U 321 I 3U 31 )
h122 Tr (U 222 I 2U 21 ) Tr (U 322 I 3U 31 )
T
……
The City College of New York
T
36
Example: Puma 560
•
Get D, H, C terms
U ij
q k
U ijk
U 211 ( Q 1 ) T 0
U 111 ( Q 1 ) T 0
2
2
1
U 212 U 221 Q1T Q 2 T1
1
0
U 313 Q1T Q 3T
2
0
T 0 j 1Q j T jk11Q k T ki1
k 1
k 1
i
T 0 Q k T j 1 Q j T j 1
0
i j
2
1
1
2
ik
or
U 312 U 321 Q1T 0 Q 2 T1
2
U 323 U 332 T 0 Q 2 T1 Q 3T 2
1
i jk
U 311 ( Q1 ) T 0
2
U 222 T 0 ( Q 2 ) T1
3
2
ik j
3
2
3
3
U 322 T 0 ( Q 2 ) T1
2
1
U 331 Q 1T 0 Q 3T 2
2
The City College of New York
3
2
3
U 333 T 0 Q 3 Q 2 T 2
2
3
37
Example: Puma 560
•
Get D, H, C terms
n
C i m j gU ji r j
j
ji
C 1 m 1 gU 11 r1 m 2 gU
1
C 2 m 2 gU
C 3 m 3 gU
r m 3 gU
21 2
r m 3 gU
22 2
2
2
3
r
31 3
3
r
32 3
3
r
33 3
The City College of New York
38
Thank you!
Homework 4 posted on the web.
Next class: Manipulator Control
z
y
z
y
z
x
z
y
x
x
y
x
The City College of New York
39