Introduction - Welcome to CUNY
Download
Report
Transcript Introduction - Welcome to CUNY
Introduction to ROBOTICS
Manipulator Control
Jizhong Xiao
Department of Electrical Engineering
City College of New York
[email protected]
The City College of New York
1
Outline
• Homework Highlights
• Robot Manipulator Control
– Control Theory Review
– Joint-level PD Control
– Computed Torque Method
– Non-linear Feedback Control
• Midterm Exam Scope
The City College of New York
2
Homework 2
Find the forward kinematics, Roll-Pitch-Yaw
representation of orientation
Joint variables ?
Why use atan2 function?
Inverse trigonometric functions have multiple solutions:
1
3
cos x
x?
x?
2
2
tan(x) tan(x k ) Limit x to [-180, 180] degree
sin x
1
0 90
90 180
a tan 2( y, x)
180 90
90 0
sin (1/ 2) 30 ,150
cos1 ( 3 / 2) 30 ,30
The City College of New York
for x and y
for x and y
for x and y
for x and y
a tan(1/ 2, 3 / 2) 30
3
Homework 3
Find kinematics model of 2-link robot, Find the inverse kinematics solution
L
L
y1
y2
x1
2
Z1
Z2
x2
m2
1
C12 S12
S12 C12
2
1 2
T0 T0 T1
0
0
0
0
m1
Inverse: know position (Px,Py,Pz) and
orientation (n, s, a), solve joint variables.
nx
n
T02 y
nz
0
sx
sy
sz
0
0 C1 C12
0 S1 S12
1
0
0
1
ax
ay
az
0
px
p y
pz
1
cos( 1 2 ) n x
sin(1 2 ) n y
1 2 a tan2(ny , nx )
cos(1 2 ) cos1 px
sin(1 2 ) sin 1 p y
1 a tan2( py ny , px nx )
The City College of New York
4
Homework 4
L
Find the dynamic model of 2-link
robot with mass equally distributed
L
y1
•
x1
2
D(q)q H (q, q ) C (q)
1 D11
D
2 21
y2
D12 1 h1 ( ,) c1 ( )
D22 2 h2 ( , ) c2 ( )
Z1
Z2
x2
m2
1
m1
Calculate D, H, C terms directly
Dik
n
T0i T0j 1Q jT ji1
U ij
q j 0
Tr(U jk J jU ji )
T
j max(i , k )
hikm
n
Tr(U
j max(i , k , m )
n
Ci m j gU ji rj
j i
Physical meaning?
T
jkm
j
J jU ji )
for j i
for j i
U ij
qk
U ijk
T0 j 1Q jT jk11Qk Tki1
T0k 1Qk Tk j11Q jT ji1
0
i j
ik j
i jk
or i k
Interaction effects of motion of joints j & k on link i
The City College of New York
5
Homework 4
Find the dynamic model of 2-link
robot with mass equally distributed
L
L
y1
y2
x1
2
D(q)q H (q, q ) C (q)
Z1
•
Derivation of L-E Formula
LK P
d L
L
( )
i
dt qi qi
xi
y
i
ri i
zi
1
point at link i
Z2
x2
m2
1
m1
Erroneous answer
Velocity of point
i
i
T0i
d i
i
Vi V r0 (
q j )ri (U ij q j )rii
dt
j 1 q j
j 1
L
0
rii
0
1
i
0
Kinetic energy of link i
Ji
1 i i
i iT
T
K i dKi Tr U ip ( ri ri dm)U ir q p qr
2 p 1 r 1
The City College of New York
6
Homework 4
Example: 1-link robot with point mass (m)
concentrated at the end of the arm.
L
Set up coordinate frame as in the figure
l
0
r11
0
1
According to physical meaning:
1 2 2
l m1
2
P 9.8m l S1
K
m
Y0
Y1
LK P
X1
1
X0
d L
L
( )
l 2 m1 9.8m l C1
dt 1 1
The City College of New York
7
Manipulator Control
The City College of New York
8
Manipulator Dynamics Revisit
• Dynamics Model of n-link Arm
D(q)q H (q, q ) C (q)
The Acceleration-related Inertia term, Symmetric Matrix
The Coriolis and Centrifugal terms
The Gravity terms
1 Driving torque
applied on each link
n
Non-linear, highly coupled , second order differential equation
Joint torque
Robot motion
The City College of New York
9
Jacobian Matrix Revisit
Forward Kinematics
n s a p
T
0
0
0
1
44
6
0
h1 (q )
h (q )
Y61 h(q ) 2
h
(
q
)
6
Y J q
61
6n n1
x
y
z
Y
x h1 ( q )
p y h2 ( q )
z h3 ( q )
(q ) h4 (q )
{n, s, a} (q ) h5 (q )
(q ) h6 (q )
dh(q)
J
dq 6n
q1
dh(q ) q 2
dq
6n
q n n1
The City College of New York
h1
q
1
h2
q1
h
6
q1
h1
q2
h2
q2
h6
q2
h1
qn
h2
qn
h6
qn 6n
10
Jacobian Matrix Revisit
• Example: 2-DOF planar robot arm
– Given l1, l2 , Find: Jacobian
x l1 cos1 l2 cos(1 2 ) h1 (1 , 2 )
y l sin l sin( ) h ( , )
1
1
2
1
2
2 1 2
1
x
Y J
y
2
h1
J 1
h2
1
(x , y)
2
l2
1 l1
h1
2 l1 sin 1 l2 sin(1 2 ) l2 sin(1 2 )
h2 l1 cos1 l2 cos(1 2 ) l2 cos(1 2 )
2
The City College of New York
11
Robot Manipulator Control
D(q)q H (q, q ) C (q)
Y h(q)
• Robot System:
e qd q
• Joint Level Controller
Trajectory q d q d e e
Controller
qd _
Planner
Find a control input (tor), q qd
q q
tor
Robot
as t
• Task Level Controller
e Y Y
d
Task level Yd Yd e e
Controller
Planner
_
Find a control input (tor),
tor
Y Yd
Y Y
Robot q q Forward
Dynamics
Kinematics
as t
The City College of New York
e Yd Y 0
12
Robot Manipulator Control
• Control Methods
– Conventional Joint PID Control
• Widely used in industry
– Advanced Control Approaches
•
•
•
•
•
Computed torque approach
Nonlinear feedback
Adaptive control
Variable structure control
….
The City College of New York
13
Control Theory Review (I)
PID controller: Proportional / Integral / Derivative control
e= d a
V = Kp • e + Ki ∫ e dt + Kd
Error signal e
d a
desired d
-
d )e
dt
Closed Loop Feedback Control
compute V using
PID feedback
V
Motor
actual a
actual a
Reference book: Modern Control Engineering, Katsuhiko Ogata, ISBN0-13-060907-2
The City College of New York
14
Evaluating the response
overshoot
steady-state error
ss error -- difference from the
system’s desired value
settling time
overshoot -- % of final value
exceeded at first oscillation
rise time -- time to span from
10% to 90% of the final value
settling time -- time to reach
within 2% of the final value
How can we eliminate
rise time
the steady-state error?
The City College of New York
15
Control Performance, P-type
Kp = 20
Kp = 50
Kp = 200
Kp = 500
The City College of New York
16
Control Performance, PI - type
Kp = 100
Ki = 50
Ki = 200
The City College of New York
17
You’ve been integrated...
Kp = 100
unstable &
oscillation
The City College of New York
18
Control Performance, PID-type
Kd = 2
Kd = 5
Kd = 10
Kd = 20
The City College of New York
Kp = 100
Ki = 200
19
PID final control
The City College of New York
20
Control Theory Review (II)
• Linear Control System
– State space equation of a system
x Ax Bu
– Example: a system:
x1 x2
x 2 u
(Equ. 1)
x1 0 1 x1 0
x 0 0 x 1u
2
2
– Eigenvalue of A are the root of characteristic equation
1 2
I A
0
0
I A 0
– Asymptotically stable
real part
all eigenvalues of A have negative
The City College of New York
21
Control Theory Review (II)
– Find a state feedback control u K x such that the
closed loop system is asymptotically stable
u k1
x1
k 2
x2
(Equ. 2)
– Closed loop system becomes
u
x ( A BK ) x
A
B
x
x
-K
– Chose K, such that all eigenvalues of A’=(A-BK) have
negative real parts
I A'
1
k1 k2
2 k2 k1 0
The City College of New York
22
Control Theory Review (III)
• Feedback linearization
– Nonlinear system X f ( x) G( x)U
U [G 1 ( x) f ( x) G 1 ( x)V ]
X V
Linear System
– Example:
V
Original system:
Nonlinear
Feedback
U
Dynamic
System
x
x cos x U
Nonlinear feedback:
U cos x V
Linear system:
The City College of New York
x V
23
Robot Motion Control (I)
• Joint level PID control
– each joint is a servo-mechanism
– adopted widely in industrial robot
– neglect dynamic behavior of whole arm
– degraded control performance especially in
high speed
– performance depends on configuration
e qd q
Trajectory q d q d e e
Controller
qd _
Planner
q q
tor
Robot
The City College of New York
24
Robot Motion Control (II)
• Computed torque method
– Robot system:
D(q)q H (q, q ) C (q)
Y h(q)
– Controller:
d kv (q d q) k p (qd q)] H (q, q) C(q)
tor D(q)[q
d q
) kv (q d q) k p (qd q) 0
(q
Error dynamics
How to chose
Kp, Kv ?
e kv e k p e 0
Advantage: compensated for the dynamic effects
Condition: robot dynamic model is known
The City College of New York
25
Robot Motion Control (II)
Error dynamics
e kv e k p e 0
Define states:
x1 e
x2 e
x1 x2
x2 kv x2 k p x1
x
0
In matrix form: 1
x
2
Characteristic equation:
How to chose Kp, Kv
to make the system
stable?
k p
1 x1
AX
kv x2
I A
1
kp
kv
2 kv k p 0
k v k v 4k p
2
The eigenvalue of A matrix is:
1, 2
Condition: have negative real part
The City College of New York
2
One of a
selections:
kv 0
kp 0
26
Robot Motion Control (III)
• Non-linear Feedback Control
Linear System
e Yd Y
Task level Yd
Planner Yd
q Forward Y
e Linear U Nonlinear tor Robot
Dynamics q Kinematics Y
Controller Feedback
_e
Robot System:
D(q)q H (q, q ) C (q)
Y h(q)
Jocobian: Y
d
[h(q)] q Jq
dq
Y Jq Jq
q J 1 (Y Jq )
D(q) J 1 (Y Jq ) H (q, q ) C(q)
The City College of New York
27
Robot Motion Control (III)
• Non-linear Feedback Control
Linear System
e Yd Y
Task level Yd
Planner Yd
q Forward Y
e Linear U Nonlinear tor Robot
Dynamics q Kinematics Y
Controller Feedback
_e
Design the nonlinear feedback controller as:
tor D(q) J 1 (U Jq ) H (q, q) C(q)
Then the linearized dynamic model:
D(q) J 1Y D(q) J 1U
Design the linear controller:
Error dynamic equation:
Y U
U Yd kv (Yd Y ) k p (Yd Y )
e kv e k p e 0
The City College of New York
28
Project
• Simulation study of Non-linear Feedback Control
e Yd Y
Task level Yd
Planner Yd
Linear System
q Forward Y
e Linear U Nonlinear tor Robot
Dynamics q Kinematics Y
Controller Feedback
_e
The City College of New York
29
Thank you!
HWK 5 posted on the web, Due: Oct. 23 before class
Next Class (Oct. 23): Midterm Exam
Time: 6:30-9:00, Please on time!
z
z
z
y
y
x
z
x
y
x
y
x
The City College of New York
30