slides - Università degli Studi di Milano

Download Report

Transcript slides - Università degli Studi di Milano

1
Molecular nanomagnets as milestones for the study of low-dimensional
magnetism: fundamental physics and applications
Wide-band solid-state NMR at a glance
Molecular spin dynamics vs temperature
Low temperature quantum level crossing
2
3
Possible applications of MNMs :
High density magnetic memory
Magneto- optical recording
Quantum computing
Spintronics
Magnetic sensors…
4
As all molecular clusters, studying bulk means
studying single molecule as Jinter-mol << Jintra-mol
As all molecular clusters, finite number of ions :
accurate spin Hamiltonian and exact
calculation of energy levels and eigenfunctions
𝐻=𝐽
𝑆𝑖 . 𝑆𝑖+1 +
𝑖
π‘ˆ 𝑆𝑖 +
𝑖
π‘ˆπ‘–π‘— 𝑆𝑖 . 𝑆𝑗 + π‘”πœ‡π΅ 𝐡
𝑖>𝑗
𝑆𝑖
𝑖
Highly symmetric geometry
5
Ideal physical framework for low dimensional
magnetism ( 0-D and/or 1-D)
π’π’πŸ+ S=0
Finite size system
Reduced number of spins
Discrete energy levels structure
Quantum phenomena
π‘ͺπ’“πŸ‘+ , S=3/2
οƒΌ Spin topology of a Quasi-Zero-Dimensional magnetic system......
οƒΌ β€œOpen” molecular ring : peculiar spin dynamics
οƒΌ Interesting quantum behaviors due to β€œreal” or anti- level crossing
6
By NMR
we are measuring the response of nuclei but, through it, we are studying
the physical properties of the whole system (electrons, nuclei & phonons)
How is it possible
Nuclei ?
π‘»πŸπ’
Nuclei are a local probe
But
in interaction with the whole system
7
electron
π‘»πŸπ’†
phonon
Advanced tools for molecular spin dynamics investigation
οƒΌ 1H NMR
53Cr
NMR
F NMR
19
53Cr
NMR
οƒΌ 1H NMR
F NMR
19
8
Abundance proton
(High sensitivity )
Study of NMR relaxation rates
and spectra
5000
NMR Spectrum
4000
I(a.u.)
3000
Full width at half maximum
(FWHM)
From 1H NMR spectrum it is possible to extract the
Full Width at Half Maximum – FWHM, given by :
2000
< βˆ†πœ— 2 >𝑑 +< βˆ†πœ— 2 >π‘š
πΉπ‘Šπ»π‘€ ∝
1000
0
-1.5
-1.0
-0.5
0.0
w(MHz)
0.5
1.0
120
1.5
300
H=1.5T
H=0.5T
H=0.3T
80
FWHM(kHz)
200
FWHM(kHz)
H C
π‘ͺπ’“πŸ– 𝒁𝒏
250
Cr8Zn
150
Cr8
60
40
20
0
100
50
0
1
0.47 T
1.23 T
π‘ͺπ’“πŸ–
100
10
100
1
10
T(k)
100
Paramagnetic behaviour of πΆπ‘Ÿ8 𝑍𝑛
in the high temperature region (T>20K)
T(k)
οƒ˜ The temperature and magnetic field dependence of 1H FWHM is similar to
9
other antiferromagnetic molecular rings, but
…….
300
H C
Dramatic
Increase!!!
250
H=1.5T
H=0.5T
H=0.3T
FWHM(kHz)
200
Cr8Zn
150
At relatively high fields, the gap is reduced
and 𝑺𝑻 =0 and 𝑺𝑻 = 1 states
are populated equally
100
50
π΅π‘œπ‘™π‘‘π‘§π‘šπ‘Žπ‘›π‘› π‘Ÿπ‘’π‘™π‘’ ;
𝑡𝑺𝑻=𝟏 = 𝑡𝑺𝑻=𝟎 π’†βˆ’βˆ†π‘¬/π’Œπ‘©π‘»
8
0
1
10
100
6
Energy(cm)-1
T(k)
2
For T<20K, condensation in the G.S.
0
πΉπ‘Šπ»π‘€ ∝
10
𝑯𝒍𝒐𝒄𝒂𝒍 = π‘―πŸŽ
4
First excited state
First
state M
ST=1=+1
ST=1,
s

2 > 1 1.5T
< βˆ†πœ— 2 >𝑑 +< βˆ†πœ—
0
π‘š
Ground state ST=0
2
3
4
Magnetic field (T)
5
6
Cr8 0.47 T
Cr8 0.73 T
Cr8 1.23 T
Fe6(Na) 0.5 T
Fe6(Na) 1 T
Fe6(Li) 1.5 T
Fe10 1.28 T
Fe10 2.5 T
1.0
9
π‘ͺπ’“πŸ– 𝒁𝒏
8
R/Rmax
π‘ͺπ’“πŸ– , π‘­π’†πŸ” , π‘­π’†πŸπŸŽ …
Cr8Zn ( HC)
H=1.5T
H=0.5T
H=0.3T
7
0.8
0.6
0.4
0.2
0.0
0.1
1
10
T/T0(H)
Homometallic rings (previous studies):
5
-1
T1 (ms)
6
4
𝑹 𝑯, 𝑻 =
3
𝟏
πŽπ’„ 𝑻
=𝑨 𝟐
π‘»πŸ 𝒙𝑻
πŽπ’„ 𝑻 + 𝝎𝟐
2
Two alternatives;
0
25
50
75
T(k)
Current case (heterometallic Cr8Zn):
𝟏
𝑹 𝑯, 𝑻 =
π‘»πŸ 𝒙𝑻
11
𝟏
πŽπ’„ 𝑻 ∝ = π‘ͺπ‘»πœΆ
𝝉𝒄
πŽπ’„ 𝑻 =
πŽπ’„π’Š ,
π’Š
𝟏
πŽπ’„ 𝑻
= 𝑨′ 𝟐
π‘»πŸ
πŽπ’„ 𝑻 + 𝝎𝟐 Theoretical calculation in progress…
πŽπ’„π’Š ∝ π’†βˆ’βˆ†/𝑻
οƒ˜ At low T (much less than the gap among 𝑆𝑇 =0 and 𝑆𝑇 =1, e.g. T=1.7K)
molecular rings populate the ground state
οƒ˜ The local (at 1𝐻 sites) magnetic field due to the contribution of electronic
(molecular) magnetic moments, becomes:
𝑯𝒍𝒐𝒄𝒂𝒍 = π‘―πŸŽ + 𝑯𝒆𝒇𝒇𝒆𝒄𝒕
πΉπ‘Šπ»π‘€ ∝
< βˆ†πœ— 2 >𝑑 +< βˆ†πœ— 2 >π‘š
approx. ο‚΅ M
< βˆ†πœ— 2 >π‘š =
1
𝑁
𝛾2
=
𝑁
12
𝑅 ( π‘–βˆˆπ‘…
A(πœ—π‘–,𝑗 )
[
𝑅
2
< πœ—π‘…,𝑖 βˆ’ πœ—0 >βˆ†π‘‘ )
π‘–βˆˆπ‘… π‘—βˆˆπ‘…
π‘Ÿπ‘–,𝑗 3
< π‘šπ‘§,𝑗 >βˆ†π‘‘ ]2
οƒΌ NMR spectral broadening due to the increase
of the electronic magnetization value
Cr8Zn M(H) a 2K
6
parall
perpen
4
2
 [emu/g]
non-magnetic
Ground State ST = 0
0
-2
-4
-6
-5
-4
-3
-2
-1
0
0H [Oe]
magnetic
Ground State ST = 1
13
Calculated energy levels in
external magnetic field
1
2
3
4
5
4
x 10
M(H) curve at T=2K
magnetic
Ground State ST = 2
12000
Cr8Zn NMR Spectrum
H=1.8T
Larmor Frequency=76.576 MHz
10000
Proton NMR spectra versus magnetic field on π‘ͺπ’“πŸ–π’π’ based
on energy levels structure by using frequency sweep technique
at the fixed temperature (T=1.7 K)
6000
4000
2000
0
-0.5
0.0
ο·ο€¨οοˆ
z)
πŽβˆ’πŽ
𝟎 (𝑴𝑯𝒛)
0.5
NMR spectra before the first level crossing
(𝑆𝑇 = 0 ↔ Non-magnetized system)
οƒΌ NMR spectra broadening by
passing of crossing level
H=3T
1.0
Larmor Frequency=127.688MHz
15000
10000
5000
5000
Cr8Zn NMR Spectrum
H=7.5T
4000
Larmor Frequency=319.214MHz
0
-1.0
-0.5
0.0 ο·ο€¨οοˆz)
𝝎 βˆ’ 𝝎𝟎 (𝑴𝑯𝒛)
0.5
1.0
3000
1H
NMR spectra after the first level crossing
(𝑆𝑇 = 0 β†’ 𝑆𝑇 = 1)
( Non-magnetized »»» Magnetized system)
I(a.u.)
1H
Cr8Zn NMR Spectrum
20000
-1.0
I(a.u.)
I(a.u.)
8000
2000
1000
0
-1.0
Calculated energy levels in
an external magnetic field
14
-0.5
0.0
0.5
1.0
πŽο·ο€¨οοˆ
βˆ’ 𝝎z)𝟎 (𝑴𝑯𝒛)
1H
NMR spectra after the second level crossing
(ST = 1 οƒ  ST = 2)
Future investigation:
spin-lattice relaxation rate study of spin dynamics
(also level crossing problem details and mix of eigenfunctions)
Anti level crossing; Mixed functions
15
Real level crossing; Unmixed functions
Conclusions:
οƒ˜ Temperature spin dynamics of π‘ͺπ’“πŸ– 𝒁𝒏 detected by β€œ 1H NMR 1/π‘»πŸ ” is qualitatively
similar to homometallic rings; an exact calculation of correlation function is needed.
At low temperature 1H NMR spectra broadening reflects the effects of M increase
when Quantum level crossing occur
οƒ˜
Future issues :
16
οƒ˜
Theoretical investigation of spin dynamics vs temperature
οƒ˜
Quantum effects due to β€œReal ”/ Anti level crossing studied by means of
low-T 1H NMR spin-lattice relaxation rate
January 15th 2013
Italy
17
T2 relaxation curve
T1 relaxation curve
18
NMR spectrum