Penning-trap mass spectrometry for neutrino physics

Download Report

Transcript Penning-trap mass spectrometry for neutrino physics

Penning-Trap Mass Spectrometry
for Neutrino Physics
Sergey Eliseev
Max-Planck Institute for Nuclear Physics, Heidelberg, Germany
International Workshop XLIII on Gross Properties of Nuclei and Nuclear Excitations
Hirschegg , January 12, 2015
OUTLINE
Basics of Penning-Trap Mass Spectrometry
PTMS for Neutrino Physics
• Type of Neutrinos
• Determination of Neutrino Mass
• Search for heavy sterile Neutrinos
Basics of Penning-Trap Mass Spectrometry
Masses of Exotic Nuclides (short-lived to stable)
Field
Nuclear structure
physics
Astrophysics
nuclear models
mass formula
Weak interaction
studies
Metrology,
fundamental constants
Neutrino physics
CPT tests
QED in HCI
Examples
dm/m
shell closures, shell quenching, regions of
deformation, drip lines, halos, Sn, Sp, S2n, S2p,
δVpn, island of stability
10-6 to 10-7
rp-process and r-process path, waiting-point
nuclei, proton threshold energies, astrophysical
reaction rates, neutron star, x-ray burst
CVC hypothesis, CKM matrix unitarity, Ft of
superallowed ß-emitters
α (h/mCs, mCs /mp, mp/me ), mSi
mmother – mdaughter :
0nbb, 0n2EC
heavy neutrinos
neutrino mass
mp and mp me- and me+
mion, electron binding energy
10-8
10-9 to 10-10
10-8-10-9
~10-10
<10-11
<10-11
Penning trap
the most accurate mass spectrometer
strong uniform
static B-field
B
B
q/m
q/m
q
1
nc =2p m B
Penning trap
SHIPTRAP
JYFLTRAP
TRIGATRAP
MLLTRAP
DB
< 5 · 10-9 h-1
B
the most accurate mass spectrometer
strong uniform
static B-field
THe-TRAP
Max-Planck Institute for Nuclear Physics,
Heidelberg
DB
< 10-11 h-1
B
B
B
q/m
q/m
q
1
nc =2p m B
Penning Trap
magnetic field
electrostatic field
B
B
q/m
q/m
B
Penning Trap
modified cyclotron motion:
1 1
n c  
2 2
n
B
1  2n
2
z



2
z



magnetron motion:
n
1 1
n c  
2 2
1  2n
axial motion:
nz 
1
2p
q

U
m d2
n
2
c
n
2

n
2

n
2
z
dn
c
 10
 10
c
 10
 10
nc
long-lived and stable nuclides
dn
n c n  n 
short-lived nuclides
nc
Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986)
Penning-Traps worldwide
JYFLTRAP
SHIPTRAP
TITAN
CPT
MLLTRAP
TRIGATRAP
THe-TRAP
LEBIT
ISOLTRAP
FSU
on-line facility for short-lived nuclides
dm/m ~ 10-9
(ToF-ICR technique)
ultra-precise Penning trap for long-lived
and stable nuclides
dm/m <10-10 (FT-ICR technique)
Penning-Traps worldwide
JYFLTRAP
SHIPTRAP
TITAN
CPT
FSU
MLLTRAP
TRIGATRAP
THe-TRAP
LEBIT
ISOLTRAP
CMU-TRAP
PENTATRAP
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
108109
type of neutrinos
 1010
heavy sterile neutrinos
 1011
neutrino mass
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
108109
type of neutrinos
 1010
heavy sterile neutrinos
 1011
neutrino mass
double-electron-capture nuclides
double b-decay nuclides
two-neutrino mode
neutrinoless mode
neutrinoless mode
Observation of 0nbb or 0n2EC proves that:
•
neutrino is a Majorana particle, n = n
•
conservation of total lepton number breaks
Measurement of T1/2 gives:
•
effective Majorana neutrino mass
| m bb ||  U ei  m i |
2
i

Neutrinoless Double-b Decay
Contribution of Penning Traps:
T1/2>1025y
measurements of Qbb – values
with a sub-keV uncertainty
transition
76Ge – 76Se
Q-value
2039.006(50)
T1/2~1019y
precision
6E-10
G. Douysset et al., PRL 86, 4259 (2001)
100Mo
– 100Ru
3034.40(17)
2E-9
S. Rahaman et al., PLB 662, 111 (2008)
130Te
– 130Xe
2527.518(13)
1E-10
M. Redshaw et al., PRL 102, 212502 (2009)
136Xe
– 136Ba
2457.83(37)
3E-09
M. Redshaw et al., PRL 98, 053003 (2007)
48Ca
– 48Ti
4268.0 (3)
7E-10
M. Redshaw et al., PRC 86, 041306(R) (2013)
A.A. Kwiatkowski et al., PRC 89, 045502 (2014)
Experiments:
GERDA & MAJORANA :
76Ge
NEMO-3:
100Mo
COBRA & CUORE:
130Te
EXO:
136Xe
CANDLES & CARVEL:
48Ca
Neutrinoless Double-Electron Capture
expected T1/2 of 0n2EC > 1030 yr
1
T1 / 2
~
Γ
Q  B
 Eγ  
2h
2
1
4
Γ
2
Neutrinoless Double-Electron Capture
expected T1/2 of 0n2EC > 1030 yr
1
T1 / 2
~
Γ
Q  B
 Eγ  
2h
2
1
4
Γ
2
Neutrinoless Double-Electron Capture
resonant enhancement of capture rate
T1/2 of 0n2EC ~ 1023 yr
Search for a transition with (Q-B2h-Eg) < 1 keV
Measurement of Q=M1-M2 at ~ 100 eV-Level
Addressed 0n2EC transitions
112Sn
→ 112Cd
JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, 042501 (2009)
74Se
→ 74Ge
JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 684, 17 (2010)
FSU, B. J. Mount et al., Phys. Rev. C 81, 032501(R) (2010)
136Ce
→ 136Ba
JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 697, 116 (2011)
184Os
→ 184W
TRIGATRAP, C. Smorra et al., Phys. Rev. C 86, 044604 (2012)
152Gd
→ 152Sm
164Er
→ 164Dy
180W
→ 180Hf
96Ru
→ 96Mo
162Er
→ 162Dy
168Yb
→ 168Er
106Cd
→
156Dy
→ 156Gd
124Xe
→ 124Te
130Ba
→ 130Xe
106Pd
Measurements with SHIPTRAP/GSI
Phys. Rev. Lett. 106 (2011) 052504; 107 (2011) 152501;
Phys. Rev. C 83 (2011) 038501; 84 (2011) 028501; 84 (2011) 012501;
Nucl. Phys. A 875 (2012) 1;
0+ → 0+ transitions
between nuclear ground states
2EC-transition
152Gd
→ 152Sm
Q (old), keV
D (old), keV
54.6(3.5)
-0.2(3.5)
Q (new), keV
D (new), keV
55.7(0.2)
0.9(0.2)
T1/2·|m2EC|2, yr
1026
164Er
→ 164Dy
23.3(3.9)
5.2(3.9)
25.07(0.12)
6.81(0.12)
2·1030
180W
→ 180Hf
144.4(4.5)
13.7(4.5)
143.1(0.2)
12.4(0.2)
3·1027
JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, 042501 (2009)
multiple-resonance phenomenon in 156Dy
 |M| =3 for 0+ → 0+
T1/2 (0+→0+) ~ 31024 y
for |m2EC|=1 eV
JYFLTRAP
SHIPTRAP
TITAN
CPT
MLLTRAP
TRIGATRAP
LEBIT
ISOLTRAP
THe-TRAP
FSU
• Q-values of all important 0nbb – transitions
are measured with sufficient accuracy
• Two resonantly enhanced 0n2EC – transitions
are found
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
108109
type of neutrinos
 1010
heavy sterile neutrinos
 1011
neutrino mass
Determination of Neutrino Mass
with an uncertainty of ~ 0.2 eV
KATRIN - Project
b--decay of Tritium
- Project
EC in 163Ho
HOLMES - Project
MARE- Project
b--decay of 187Re
Measurements of Q-Values are required
with a relative uncertainty (dQ/m) < 10-11
THe-TRAP & PENTATRAP
Max-Planck Institute for Nuclear Physics
(Heidelberg)
Division “Stored and Cooled Ions”
THe-TRAP
PENTATRAP
Measurements of mass ratios of
THe-TRAP
PENTATRAP
Tritium \ 3He
with an accuracy of < 10-11
187Re
\ 187Os
163Ho
\ 163Dy
THe-TRAP for KATRIN: 3H3He Q-value
18 615
18 610
THe-Trap aims for
dQ ≈ 20 meV
dQ/m < 10-11
Q-Value [eV]
18 605
18 600
18 595
Penning
Traps
18 590
18 585
Status:
18 580
Q = m(16O5+)-m(12C4+)
dQ/m ≈ 10-10
18 575
S. Streubel et al., Appl. Phys. B 114, 137 (2014)
FTICR
b -Spectrometers
(Curie plots)
Q=18 589.8 (1.2) eV
Sz. Nagy et al., Euro. Phys. Lett. 74, 404 (2006)
PENTATRAP for ECHo, HOLMES, MARE
Measurements of Q-Values of
b--decay of 187Re
Intensity
EC in 163Ho
Q=2.47 keV
Q=2.55 keV
De-Excitation Energy / keV
with an uncertainty of ~ 1 eV
see: Repp, J. et al . Appl. Phys. B, 107, 983 (2012)
Roux, C. et al. A ppl. P hys. B, 107, 997 (2012)
Status of PENTATRAP
• Production of highly charged ions (187Re50+, Xe25+, Ar8+)
• Transport of HCIs to Penning-trap mass spectrometer
• Trapping of HCIs for up to 30 min.
• Measurement of the axial-motion frequency
Status of PENTATRAP
Improvement of the Experiment
Performence
(NEAR) FUTURE
Q-values of 187Re b-decay & 163Ho EC
with ~ 1 eV uncertainty
search for the best b-transition
for the neutrino mass determination
EC in 163Ho; Q-value ≈ 2.55 keV
b-decay of 3H; Q-value ≈ 18.6 keV
b-decay of 187Re; Q-value ≈ 2.47 keV
search for the best b-transition
for the neutrino mass determination
Intensity
Electron-Capture Transitions
Q-Belectron → 0
Q-value → 0
De-Excitation Energy / keV
search for the best EC-transition
for the neutrino mass determination
Measurement program for
ISOLTRAP and JYFLTRAP
Penning Traps for Neutrino Mass
ISOLTRAP
JYFLTRAP
accuracy ~ 10-8
THe-TRAP
PENTATRAP
accuracy < 10-11
search for most suitable
EC-transitions
M(3H)-M(3He)
M(187Re)-M(187Os)
M(163Ho)-M(163Dy)
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
108109
type of neutrinos
 1010
heavy sterile neutrinos
 1011
neutrino mass
Extension of Standard Model:
heavy sterile neutrinos: 1 to 100 keV
overview of different approaches
F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) 053005
KATRIN and MARE (b-decay)
H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177
search in electron capture (EC)
F.X. Hartmann, Phys. Rev. C 45 (1992) 900
Extension of Standard Model:
heavy sterile neutrinos: 1 to 100 keV
overview of different approaches
F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) 053005
KATRIN and MARE (b-decay)
H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177
search in electron capture (EC)
F.X. Hartmann, Phys. Rev. C 45 (1992) 900
heavy sterile neutrinos in electron capture
calorimetric spectrum
A(Z-1,N)h + ne
Intensity
A(Z,N) + e
A(Z-1,N) + Ec
De-Excitation Energy / keV
lM1
lN1
3 active
neutrinos
lM1
lN1

exp
Function(Q-value, Ue4)
Measurements of Q-values of most
suitable EC-transitions
P.E. Filianin et al., ArXiv:1402.4400
• largest sensitivity to Ue4 around m4 ≈ Q - Bi
• contribution of n4 to i-capture only if m4 ≤ Q - Bi
nuclide half-life
Q / keV
Bi / keV
Bj / keV
Q-Bi / keV
163Ho
4570 y
2.555(16)
M1: 2.0468(5)
N1: 0.4163(5)
0.51
235Np
396 d
124.2(9)
K: 115.6061(16)
L1: 21.7574(3)
8.6
157Tb
71 y
60.04(30)
K: 50.2391(5)
L1: 8.3756(5)
9.76
123Te
1017 y
52.7(16)
K: 30.4912(3)
L1: 4.9392(3)
22.2
202Pb
52 ky
46(14)
L1: 15.3467(4)
M1: 3.7041(4)
30.7
205Pb
13 My
50.6(5)
L1: 15.3467(4)
M1: 3.7041(4)
35.3
179Ta
1.82 y
105.6(4)
K: 65.3508(6)
L1: 11.2707(4)
40.2
193Pt
50 y
56.63(30)
L1: 13.4185(3)
M1: 3.137(17)
43.2
105 cryogenic microcalorimeters
10 decays/s in each detector
Measurement time of 1 year
dQ=0, wave functions are known precisely
2
Ue4
•
•
•
•
m4 / (Q - Bi)
2
Ue4
m4 / keV
measurements of Q-values with
uncertainties dQ/m < 10-10 are reqiured
measurement programme for PENTATRAP
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
far future
completed
type of neutrinos
heavy sterile neutrinos
near future
neutrino mass
Thank you for your attention !