Hier Titel eingeben - uni

Download Report

Transcript Hier Titel eingeben - uni

Inertial Confinement Fusion TU Darmstadt

Dieter H.H. Hoffmann TU / GSI Darmstadt 300. WE-Heraeus Seminar ENERGIEFORSCHUNG 26-28 Mai 2003

3 confinement concepts

TU Darmstadt

2

TU Darmstadt Fusion of Hydrogen Isotopes Deuterium und Tritium

3

TU Darmstadt Microballoon Fusion-target

4

Principle of inertial fusion TU Darmstadt

5

TU Darmstadt

6

Lawson Criterion

n

 

10

14

s/cm

3  r

R>1g/cm

2

n: Particle number density [cm -3 ] r: density [g/cm 3 ]

: Confinement time [s] T: Temperature [keV] R: compressed fuel radius

Figure of merit: n



T

TU Darmstadt

7

TU Darmstadt

8

Heavy Ion Target, schematically

TU Darmstadt

9

Heavy ion target

TU Darmstadt

10

Indirect drive heavy ion target

TU Darmstadt

J. Meyer-ter-Vehn 11

Indirect drive heavy ion target

TU Darmstadt

J. Meyer-ter-Vehn 12

Symmetry by radiation shields

TU Darmstadt

J. Maruhn, Frankfurt 13

National Ignition Facility, LLNL

TU Darmstadt

14

TU Darmstadt

15

Why heavy ions: Comparison of concepts

TU Darmstadt

16

Schematic Fusion Power Plant based on Heavy Ion Beams TU Darmstadt

17

Anforderungen an einen Beschleuniger für die Trägheitsfusion Energie pro Puls: Pulslänge: Pulsleistung: E  t  5 – 10 MJ 5-10 ns P  10 15 W Teilchenzahl pro Puls bei E0 = 10 GeV Und Au, Pb, Bi Projektilen: N  10 15

TU Darmstadt

18

HIDIF study: Heavy Ion Driverfor Inertial Fusion

TU Darmstadt

19

HIDIF

TU Darmstadt

20

GSI - Darmstadt TU Darmstadt

21

Present and Future Facilities at GSI TU Darmstadt

22

Energy loss on free and bound electrons

TU Darmstadt

23

High homogeneity dense plasmas Conversion of von Laserlight into soft X-rays for Interaction experiments with heavy ions

M. Roth et al.

TU Darmstadt

24

Heavy ion beam & target

target gasdynamic motion beam volume heating

TU Darmstadt

25

Final Focus

TU Darmstadt

26

Plasma Linse (U. Neuner et al)

focal beam spots nonlinear B-field TU Darmstadt

Introduction P etawatt H igh E nergy L aser for Heavy I on E x periments Nd:Glas Laser Double-pass and Booster Geometry, 31.5cm Beamdiameter: 4-6 kJ Puls Energy @ 10 ns 28

High Energy Ions in Laser Plasma

Intense Laser Beam Matter Interaction

Laser Beam

TU Darmstadt

29

TU Darmstadt

30

TU Darmstadt

31

Pulsed-power accelerators with z-pinch loads provide efficient time compression and power amplification Target Chamber

Z

11.5 MJ stored energy 19 MA peak load current 40 TW electrical power to load 100-250 TW x-ray power 1-1.8 MJ x-ray energy TU Darmstadt

32

Two complementary approaches to z-pinch-driven capsule implosions are being studied

Double-ended hohlraum Key issues

• • • • •

hohlraum energetics radiation symmetry pulseshaping preheat capsule implosions Dynamic hohlraum TU Darmstadt

• •

Two 60 MA pinches 380 MJ yield

• •

54 MA pinch 530 MJ yield Both concepts use hohlraum coupling, symmetry, and capsule scaling physics developed in the indirect-drive laser and ion beam programs

33

Recent Progress in ICF Capsule Experiments at Sandia National Laboratories Tom Mehlhorn, Manager Target & Z-pinch Theory Dept Sandia National Laboratories International Workshop on Physics of High Energy Density in Matter 2003 Hirschegg, Austria

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL84000.