Penning-Trap Mass Spectrometry for Neutrino Physics

Download Report

Transcript Penning-Trap Mass Spectrometry for Neutrino Physics

Penning-Trap Mass Spectrometry
for Neutrino Physics
Sergey Eliseev
Max-Planck Institute for Nuclear Physics, Heidelberg, Germany
ECT* Workshop, Trento, May 2014
OUTLINE
Basics of Penning-Trap Mass Spectrometry
PTMS for Neutrino Physics
• Type of Neutrinos
• Determination of Neutrino Mass
• Search for heavy sterile Neutrinos
Basics of Penning-Trap Mass Spectrometry
Masses of Exotic Nuclides (short-lived to stable)
Field
Nuclear structure
physics
Astrophysics
nuclear models
mass formula
Weak interaction
studies
Metrology,
fundamental constants
Neutrino physics
CPT tests
QED in HCI
Examples
dm/m
shell closures, shell quenching, regions of
deformation, drip lines, halos, Sn, Sp, S2n, S2p,
δVpn, island of stability
10-6 to 10-7
rp-process and r-process path, waiting-point
nuclei, proton threshold energies, astrophysical
reaction rates, neutron star, x-ray burst
CVC hypothesis, CKM matrix unitarity, Ft of
superallowed ß-emitters
α (h/mCs, mCs /mp, mp/me ), mSi
mmother – mdaughter :
0nbb, 0n2EC
heavy neutrinos
neutrino mass
mp and mp me- and me+
mion, electron binding energy
10-8
10-9 to 10-10
10-8-10-9
~10-10
<10-11
<10-11
Penning Trap
uniform magnetic field
B
B
q/m
q/m
1 qB
nc =2p m
Penning Trap
magnetic field
electrostatic field
B
B
q/m
q/m
B
Penning Trap
modified cyclotron motion:
B
1 1

n   n c    1  2n z2 
2 2

magnetron motion:
1 1
2 
n   n c    1  2n z 
2 2

axial motion:
1
nz 
2p
q U
 2
m d
n  n n n
2
c
2

2

2
z
dn c
 10 10
nc
long-lived and stable nuclides
n c  n  n 
short-lived nuclides
dn c
 10 10
nc
Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986)
Penning-Traps worldwide
JYFLTRAP
SHIPTRAP
TITAN
CPT
TRIGATRAP
LEBIT
ISOLTRAP
FSU
on-line facility for short-lived nuclides
dm/m ~ 10-9
(ToF-ICR technique)
ultra-precise Penning trap for long-lived
and stable nuclides
dm/m <10-10 (FT-ICR technique)
MLLTRAP
Penning-Traps worldwide
JYFLTRAP
SHIPTRAP
TITAN
CPT
FSU
MLLTRAP
TRIGATRAP
LEBIT
THe-TRAP
ISOLTRAP
PENTATRAP
Penning-Traps worldwide
novel PI-ICR technique
dm/m ~ 10-10 SHIPTRAP
TITAN
CPT
FSU
JYFLTRAP
MLLTRAP
TRIGATRAP
LEBIT
THe-TRAP
ISOLTRAP
PENTATRAP
Penning-Traps worldwide
novel PI-ICR technique
dm/m ~ 10-10 SHIPTRAP
TITAN
CPT
JYFLTRAP
MLLTRAP
TRIGATRAP
LEBIT
THe-TRAP
ISOLTRAP
PENTATRAP
FSU
presently
In near future
short-lived nuclides
dm/m ~ 10-9
short-lived nuclides
dm/m ~ 10-10
long-lived & stable
nuclides
dm/m <10-10
long-lived & stable
nuclides
dm/m <10-11
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
108109
type of neutrinos
 1010
heavy sterile neutrinos
 1011
neutrino mass
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
108109
type of neutrinos
 1010
heavy sterile neutrinos
 1011
neutrino mass
double-electron-capture nuclides
double b-decay nuclides
two-neutrino mode
neutrinoless mode
neutrinoless mode
Observation of 0nbb or 0n2EC proves that:
•
neutrino is a Majorana particle, n = n
•
conservation of total lepton number breaks
Measurement of T1/2 gives:
•
effective Majorana neutrino mass
| mbb || i U ei2  mi |

Neutrinoless Double-b Decay
Contribution of Penning Traps:
T1/2>1025y
measurements of Qbb – values
with a sub-keV uncertainty
transition
76Ge – 76Se
Q-value
2039.006(50)
T1/2~1019y
precision
6E-10
G. Douysset et al., PRL 86, 4259 (2001)
100Mo
– 100Ru
3034.40(17)
2E-9
S. Rahaman et al., PLB 662, 111 (2008)
130Te
– 130Xe
2527.518(13)
1E-10
M. Redshaw et al., PRL 102, 212502 (2009)
136Xe
– 136Ba
2457.83(37)
3E-09
M. Redshaw et al., PRL 98, 053003 (2007)
Experiments:
GERDA & MAJORANA :
76Ge
NEMO-3:
100Mo
COBRA & CUORE:
130Te
EXO:
136Xe
Neutrinoless Double-Electron Capture
expected T1/2 of 0n2EC > 1030 yr
1
Γ
~
T1 / 2 Q  B  E 2  1 Γ 2
2h
γ
4
Neutrinoless Double-Electron Capture
expected T1/2 of 0n2EC > 1030 yr
1
Γ
~
T1 / 2 Q  B  E 2  1 Γ 2
2h
γ
4
Neutrinoless Double-Electron Capture
resonant enhancement of capture rate
T1/2 of 0n2EC ~ 1023 yr
Search for a transition with (Q-B2h-Eg) < 1 keV
Measurement of Q=M1-M2 at ~ 100 eV-Level
Addressed 0n2EC transitions
112Sn
→ 112Cd
JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, 042501 (2009)
74Se
→ 74Ge
JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 684, 17 (2010)
FSU, B. J. Mount et al., Phys. Rev. C 81, 032501(R) (2010)
136Ce
→ 136Ba
JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 697, 116 (2011)
184Os
→ 184W
TRIGATRAP, C. Smorra et al., Phys. Rev. C 86, 044604 (2012)
152Gd
→ 152Sm
164Er
→ 164Dy
180W
→ 180Hf
96Ru
→ 96Mo
162Er
→ 162Dy
168Yb
→ 168Er
106Cd
→
156Dy
→ 156Gd
124Xe
→ 124Te
130Ba
→ 130Xe
106Pd
Measurements with SHIPTRAP/GSI
Phys. Rev. Lett. 106 (2011) 052504; 107 (2011) 152501;
Phys. Rev. C 83 (2011) 038501; 84 (2011) 028501; 84 (2011) 012501;
Nucl. Phys. A 875 (2012) 1;
0+ → 0+ transitions
between nuclear ground states
2EC-transition
152Gd
→ 152Sm
Q (old), keV
D (old), keV
54.6(3.5)
-0.2(3.5)
Q (new), keV
D (new), keV
55.7(0.2)
0.9(0.2)
T1/2·|m2EC|2, yr
1026
164Er
→ 164Dy
23.3(3.9)
5.2(3.9)
25.07(0.12)
6.81(0.12)
2·1030
180W
→ 180Hf
144.4(4.5)
13.7(4.5)
143.1(0.2)
12.4(0.2)
3·1027
JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, 042501 (2009)
multiple-resonance phenomenon in 156Dy
 |M| =3 for 0+ → 0+
T1/2 (0+→0+) ~ 31024 y
for |m2EC|=1 eV
To-Do List for Nuclear Physicists
• Search for new nuclear excited states
in the daughters of the 0n2EC – transitions
• Calculation of the nuclear matrix elements
of the 0n2EC – transitions
→ 74Ge
106Cd → 106Pd
124Xe → 124Te
136Ce → 136Ba
162Er → 162Dy
74Se
→ 96Mo
112Sn → 112Cd
130Ba → 130Xe
156Dy → 156Gd
168Yb → 168Er
96Ru
184Os
→ 184W
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
108109
type of neutrinos
 1010
heavy sterile neutrinos
 1011
neutrino mass
Determination of Neutrino Mass
with an uncertainty of ~ 0.2 eV
KATRIN - Project
b--decay of Tritium
- Project
EC in 163Ho
HOLMES - Project
MARE- Project
b--decay of 187Re
Measurements of Q-Values are required
with a relative uncertainty (dQ/m) < 10-11
THe-TRAP & PENTATRAP
Max-Planck Institute for Nuclear Physics
(Heidelberg)
Division “Stored and Cooled Ions”
THe-TRAP
PENTATRAP
Measurements of mass ratios of
THe-TRAP
PENTATRAP
Tritium \ 3He
with an accuracy of < 10-11
187Re
\ 187Os
163Ho
\ 163Dy
THe-TRAP for KATRIN: 3H3He Q-value
18 615
18 610
THe-Trap aims for
dQ ≈ 20 meV
dQ/m < 10-11
Q-Value [eV]
18 605
18 600
18 595
Penning
Traps
18 590
18 585
Status:
18 580
Q = m(16O5+)-m(12C4+)
dQ/m ≈ 10-10
18 575
S. Streubel et al., Appl. Phys. B 114, 137 (2014)
FTICR
b -Spectrometers
(Curie plots)
Q=18 589.8 (1.2) eV
Sz. Nagy et al., Euro. Phys. Lett. 74, 404 (2006)
PENTATRAP for ECHo, HOLMES, MARE
Measurements of Q-Values of
b--decay of 187Re
Intensity
EC in 163Ho
Q=2.47 keV
Q=2.55 keV
De-Excitation Energy / keV
with an uncertainty of ~ 1 eV
see: Repp, J. et al. Appl. Phys. B, 107, 983 (2012)
Roux, C. et al. Appl. Phys. B, 107, 997 (2012)
Status of PENTATRAP
• Production of highly charged ions (187Re50+, Xe25+, Ar8+)
• Transport of HCIs to Penning-trap mass spectrometer
• Trapping of HCIs for up to 30 min.
• Measurement of the axial-motion frequency
Status of PENTATRAP
Improvement of the Experiment
Performence
(NEAR) FUTURE
Q-values of 187Re b-decay & 163Ho EC
with ~ 1 eV uncertainty
Development of ECHo, HOLMES, MARE
Q-values of 187Re b-decay & 163Ho EC
with ~ 30 eV uncertainty
(dQ/m ~ 2·10-10)
2003 C. Arnaboldi et al.
2000 M. Galeazzi et al.
1999 A. Alessandrello et al.
1993 K. Ashktorab et al.
1992 E. Cosulich et al.
1967 E. Huster & H. Verbeek
1965 R.L. Brodzinski & D.C. Conway
2013 ECHo
1997 F. Gatti et al.
1994 S. Yasumi et al.
1993 F. Bosch et al.
1992 Hartmann & Naumann
1986 S. Yasumi et al.
1985 Hartmann & Naumann
1984 E. Laegsgaard et al.
1983 P.A. Baisden et al.
1982 J.U. Andersen et al.
163Ho
187Re
2003 C. Arnaboldi et al.
2000 M. Galeazzi et al.
1999 A. Alessandrello et al.
1993 K. Ashktorab et al.
1992 E. Cosulich et al.
1967 E. Huster & H. Verbeek
1965 R.L. Brodzinski & D.C. Conway
2013 ECHo
1997 F. Gatti et al.
1994 S. Yasumi et al.
1993 F. Bosch et al.
1992 Hartmann & Naumann
1986 S. Yasumi et al.
1985 Hartmann & Naumann
1984 E. Laegsgaard et al.
1983 P.A. Baisden et al.
1982 J.U. Andersen et al.
163Ho
187Re
Direct measurements of
Q-values of 187Re b-decay & 163Ho EC
with dQ/m ~ 2·10-10
are required now !!!
2003 C. Arnaboldi et al.
2000 M. Galeazzi et al.
1999 A. Alessandrello et al.
1993 K. Ashktorab et al.
1992 E. Cosulich et al.
1967 E. Huster & H. Verbeek
1965 R.L. Brodzinski & D.C. Conway
2013 ECHo
1997 F. Gatti et al.
1994 S. Yasumi et al.
1993 F. Bosch et al.
1992 Hartmann & Naumann
1986 S. Yasumi et al.
1985 Hartmann & Naumann
1984 E. Laegsgaard et al.
1983 P.A. Baisden et al.
1982 J.U. Andersen et al.
163Ho
187Re
Penning-Traps worldwide
JYFLTRAP
SHIPTRAP
TITAN
CPT
TRIGATRAP
LEBIT
ISOLTRAP
FSU
on-line facility for short-lived nuclides
dm/m ~ 10-9
(ToF-ICR technique)
ultra-precise Penning trap for long-lived
and stable nuclides
dm/m <10-10 (FT-ICR technique)
MLLTRAP
Penning-Traps worldwide
novel PI-ICR technique
dm/m ~ 10-10 SHIPTRAP
TITAN
CPT
FSU
TRIGATRAP
LEBIT
ISOLTRAP
JYFLTRAP
MLLTRAP
New PI-ICR technique
(Phase-Imaging Ion-Cyclotron-Resonance)
n c  n  n 
B
  2pn
n 
2pt
  2pn
n 
2pt
n c  n  n 
Penning trap
B
position-sensitive detector
delayline position-sensitive detector RoentDek GmbH DLD40
Active diameter
42 mm
Channel diameter
25 mm
Open area ratio
>50 %
Position resolution
70 mm 
Max. B-field
a few mT 
Time resolution
~ 10 ns
image of magnetron motion (G ≈ 20)
8 mm
1 mm
PI-ICR vs. ToF-ICR in experiment
PI-ICR
ToF-ICR
10-hour measurements
d[M(124Xe) - M(124Te)] ~ 300 eV
d[M(132Xe) - M(131Xe)] ~ 70 eV !!!
Gain in Precision ~ 4.5 !!!
novel PI-ICR technique at SHIPTRAP
DM = M(132Xe) - M(131Xe)
dDM)SHIPTRAP = (30stat )( 12sys) eV
DMSHIPTRAP - DMreference = (8 ± 35) eV
novel PI-ICR technique at SHIPTRAP
DM = M(132Xe) - M(131Xe)
first ever measurement of mass difference
of singly charged medium-heavy non-mass-doublets
with a relative accuracy of 2·10-10 !!!
2003 C. Arnaboldi et al.
2000 M. Galeazzi et al.
1999 A. Alessandrello et al.
1993 K. Ashktorab et al.
1992 E. Cosulich et al.
1967 E. Huster & H. Verbeek
1965 R.L. Brodzinski & D.C. Conway
1997 F. Gatti et al.
1994 S. Yasumi et al.
1993 F. Bosch et al.
1992 Hartmann & Naumann
1986 S. Yasumi et al.
1985 Hartmann & Naumann
1984 E. Laegsgaard et al.
1983 P.A. Baisden et al.
1982 J.U. Andersen et al.
163Ho
187Re
SHIPTRAP measurement (April 2014)
M(187Re)-M(187Os) = 2492 (30stat) (15sys) eV
Preparation of the Measurement of
M(163Ho)-M(163Dy)
2003 C. Arnaboldi et al.
2000 M. Galeazzi et al.
1999 A. Alessandrello et al.
1993 K. Ashktorab et al.
1992 E. Cosulich et al.
1967 E. Huster & H. Verbeek
1965 R.L. Brodzinski & D.C. Conway
1997 F. Gatti et al.
1994 S. Yasumi et al.
1993 F. Bosch et al.
1992 Hartmann & Naumann
1986 S. Yasumi et al.
1985 Hartmann & Naumann
1984 E. Laegsgaard et al.
1983 P.A. Baisden et al.
1982 J.U. Andersen et al.
163Ho
187Re
search for the best b-transition
for the neutrino mass determination
EC in 163Ho; Q-value ≈ 2.55 keV
b-decay of 3H; Q-value ≈ 18.6 keV
b-decay of 187Re; Q-value ≈ 2.47 keV
search for the best b-transition
for the neutrino mass determination
Intensity
Electron-Capture Transitions
Q-Belectron → 0
Q-value → 0
De-Excitation Energy / keV
search for the best EC-transition
for the neutrino mass determination
Measurement program for
ISOLTRAP and JYFLTRAP
Penning Traps for Neutrino Mass
ISOLTRAP
JYFLTRAP
accuracy ~ 10-8
SHIPTRAP
accuracy ~ 2·10-10
THe-TRAP
PENTATRAP
accuracy < 10-11
search for most suitable
EC-transitions
novel PI-ICR technique
M(187Re)-M(187Os)
M(163Ho)-M(163Dy)
M(3H)-M(3He)
M(187Re)-M(187Os)
M(163Ho)-M(163Dy)
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
108109
type of neutrinos
 1010
heavy sterile neutrinos
 1011
neutrino mass
Extension of Standard Model:
heavy sterile neutrinos: 1 to 100 keV
overview of different approaches
F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) 053005
KATRIN and MARE (b-decay)
H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177
search in electron capture (EC)
F.X. Hartmann, Phys. Rev. C 45 (1992) 900
Extension of Standard Model:
heavy sterile neutrinos: 1 to 100 keV
overview of different approaches
F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) 053005
KATRIN and MARE (b-decay)
H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177
search in electron capture (EC)
F.X. Hartmann, Phys. Rev. C 45 (1992) 900
heavy sterile neutrinos in electron capture
calorimetric spectrum
A(Z-1,N)h + ne
Intensity
A(Z,N) + e
A(Z-1,N) + Ec
De-Excitation Energy / keV
lM1
lN1
3 active
neutrinos
lM1
lN1

exp
Function(Q-value, Ue4)
Measurements of Q-values of most
suitable EC-transitions
P.E. Filianin et al., ArXiv:1402.4400
• largest sensitivity to Ue4 around m4 ≈ Q - Bi
• contribution of n4 to i-capture only if m4 ≤ Q - Bi
nuclide half-life
Q / keV
Bi / keV
Bj / keV
Q-Bi / keV
163Ho
4570 y
2.555(16)
M1: 2.0468(5)
N1: 0.4163(5)
0.51
235Np
396 d
124.2(9)
K: 115.6061(16)
L1: 21.7574(3)
8.6
157Tb
71 y
60.04(30)
K: 50.2391(5)
L1: 8.3756(5)
9.76
123Te
1017 y
52.7(16)
K: 30.4912(3)
L1: 4.9392(3)
22.2
202Pb
52 ky
46(14)
L1: 15.3467(4)
M1: 3.7041(4)
30.7
205Pb
13 My
50.6(5)
L1: 15.3467(4)
M1: 3.7041(4)
35.3
179Ta
1.82 y
105.6(4)
K: 65.3508(6)
L1: 11.2707(4)
40.2
193Pt
50 y
56.63(30)
L1: 13.4185(3)
M1: 3.137(17)
43.2
105 cryogenic microcalorimeters
10 decays/s in each detector
Measurement time of 1 year
dQ=0, wave functions are known precisely
2
Ue4
•
•
•
•
m4 / (Q - Bi)
2
Ue4
m4 / keV
measurements of Q-values with
uncertainties dQ/m < 10-10 are reqiured
measurement programme for PENTATRAP
High Precision PTMS
Q = Mmother- Mdaughter of b and bb transitions
far future
completed
type of neutrinos
heavy sterile neutrinos
near future
neutrino mass
Thank you for your attention !