Transcript Insulin.ppt

Expression Modules
Brian S. Yandell (with slides from
Steve Horvath, UCLA, and
Mark Keller, UW-Madison)
Weighted models for insulin
Detected by scanone
# transcripts that match
weighted insulin model
in each of 4 tissues:
Detected by Ping’s multiQTL model
tissue
# transcripts
Islet
1984
Adipose
605
Liver
485
Gastroc
404
Ping Wang
insulin main effects
Chr 2
Chr 9
Chr 12
Chr 16
Chr 17
Chr 19
Chr 14
How many islet
transcripts show
this same genetic
dependence at
these loci?
Expression Networks
Zhang & Horvath (2005)
www.genetics.ucla/edu/labs/horvath/CoexpressionNetwork
• organize expression traits using correlation

• adjacency
aij | cor ( xi , x j ) | ,   6
• connectivity
ki  sum l (ail )
• topological
overlap
TOM ij 
aij  sum l (ail a jl )
1  aij  min( ki , k j )
Using the topological overlap matrix
(TOM) to cluster genes
– modules correspond to branches of the dendrogram
Genes correspond to
rows and columns
Hierarchical
clustering
dendrogram
TOM plot
TOM matrix
Module:
Correspond
to branches
module traits highly correlated
• adjacency attenuates correlation
• can separate positive, negative correlation
• summarize module
www.genetics.ucla/edu/labs/horvath/CoexpressionNetwork
– eigengene
– weighted average of traits
• relate module
– to clinical traits
– map eigengene
advantages of Horvath modules
• emphasize modules (pathways) instead of individual genes
– Greatly alleviates the problem of multiple comparisons
– ~20 module comparisons versus 1000s of gene comparisons
• intramodular connectivity ki finds key drivers (hub genes)
– quantifies module membership (centrality)
– highly connected genes have an increased chance of validation
• module definition is based on gene expression data
– no prior pathway information is used for module definition
– two modules (eigengenes) can be highly correlated
• unified approach for relating variables
– compare data sets on same mathematical footing
• scale-free: zoom in and see similar structure
Ping Wang
modules for 1984 transcripts with similar genetic architecture as insulin
contains the insulin trait
Islet – modules
17
2
16
14
19
12
9
chromosomes
Insulin trait
Islet – enrichment for modules
Module
BLUE
GREEN
PURPLE
BLACK
MAGENTA
YELLOW
RED
BROWN
TURQUOISE
PINK
Pvalue
Qvalue Count
Size
0.0005
0.0006
0.0009
0.0012
0.0008
0.0055
0.0056
0.0463
0.0470
0.0507
0.0593
0.0457
0.0970
0.0970
30
18
11
19
4
2
10
1068
511
241
590
76
20
707
0.0011
0.0078
2.54E-05
0.0001
0.0004
0.0005
0.0006
0.0009
0.0011
0.0012
0.0026
0.0026
0.0026
0.0017
0.0026
0.0057
0.0002
0.0003
0.0003
0.0004
0.0004
0.0092
0.0165
0.0138
0.0011
0.0040
0.0040
0.0040
0.0040
0.0041
0.0041
0.0041
0.0675
0.0675
0.0675
0.0619
0.0619
0.1442
0.0830
0.0830
0.0830
0.0830
0.0608
0.0612
7
2
7
5
5
5
5
5
4
4
7
7
7
2
5
4
17
10
7
40
2
4
2769
68
313
179
225
228
239
266
162
163
281
281
281
13
200
96
279
115
57
1021
14
384
Term
biosynthetic process
cellular lipid metabolic process
lipid biosynthetic process
lipid metabolic process
phosphate transport
intermediate filament-based process
ion transport
nucleobase, nucleoside, nucleotide and nucleic acid
metabolic process
sensory perception of sound
cell cycle process
microtubule-based process
mitotic cell cycle
M phase
cell division
cell cycle phase
mitosis
M phase of mitotic cell cycle
cell projection organization and biogenesis
cell part morphogenesis
cell projection morphogenesis
steroid hormone receptor signaling pathway
reproductive process
response to pheromone
enzyme linked receptor protein signaling pathway
morphogenesis of an epithelium
morphogenesis of embryonic epithelium
anatomical structure morphogenesis
vesicle organization and biogenesis
regulation of apoptosis
Insulin
chromosomes
www.geneontology.org
• ontologies
– Cellular component (GOCC)
– Biological process (GOBP)
– Molecular function (GOMF)
• hierarchy of classification
– general to specific
– based on extensive literature search, predictions
• prone to errors, historical inaccuracies