Transcript rstut 6958

BROWNIAN MOTION
A tutorial
Krzysztof Burdzy
University of Washington
A paradox
f : [0,1]  R,
sup | f (t ) |  
t[ 0,1]
P ( f (t )    Bt  f (t )   , 0  t  1)
 11

2
 c( ) exp    ( f (t )) dt 
 20

(*)
(*) is maximized by f(t) = 0, t>0
The most likely (?!?) shape of a
Brownian path:
Microsoft stock
- the last 5 years
Definition of Brownian motion
Brownian motion is the unique process
with the following properties:
(i) No memory
(ii) Invariance
(iii) Continuity
(iv) B0  0, E ( Bt )  0, Var( Bt )  t
Memoryless process
t0
t1
t2
t3
Bt1  Bt0 , Bt2  Bt1 , Bt3  Bt2 , 
are independent
Invariance
The distribution of Bt  s  Bs
depends only on t.
Path regularity
(i) t  Bt
(ii) t  Bt
is continuous a.s.
is nowhere differentiable a.s.
Why Brownian motion?
Brownian motion belongs to several families
of well understood stochastic processes:
(i) Markov processes
(ii) Martingales
(iii) Gaussian processes
(iv) Levy processes
Markov processes
L {Bt , t  s | Bs }  L {Bt , t  s | Bu , 0  u  s}
The theory of Markov processes uses
tools from several branches of analysis:
(i) Functional analysis (transition semigroups)
(ii) Potential theory (harmonic, Green functions)
(iii) Spectral theory (eigenfunction expansion)
(iv) PDE’s (heat equation)
Martingales
s  t  E ( Bt | Bs )  Bs
Martingales are the only family of processes
for which the theory of stochastic integrals is
fully developed, successful and satisfactory.
t
X
0
s
dBs
Gaussian processes
Bt1 , Bt2 ,  , Btn
is multidimensional
normal (Gaussian)
(i) Excellent bounds for tails
(ii) Second moment calculations
(iii) Extensions to unordered parameter(s)
The Ito formula
t
X
dB

lim
s
s

0
n 
t
nt
X
k 0
k/n
( B( k 1) / n  Bk / n )
t
1
f ( Bt )  f ( B0 )   f ( Bs )dBs   f ( Bs )ds
20
0
Random walk
Wt
t
Independent steps, P(up)=P(down)
 aW
t/a

,t  0
a


(in distribution)
Bt , t  0
Scaling
Central Limit Theorem (CLT),
parabolic PDE’s
D
{Bt , 0  t  1}  { a Bt / a , 0  t  1}
Cameron-Martin-Girsanov formula
Multiply the probability of each Brownian path
{Bt , 0  t  1} by
1
1

1
2
exp   f ( s )dBs   ( f ( s )) ds 
20
0

The effect is the same as replacing
{Bt , 0  t  1} with {Bt  f (t ), 0  t  1}
Invariance (2)
Time reversal
D
{Bt , 0  t  1}  {B1t  B1 , 0  t  1}
0
1
Brownian motion and the heat equation
u ( x, t ) – temperature at location x at time t
Heat equation:
 (dx)  u ( x,0)dx

1
u ( x , t )   x u ( x, t )
t
2
Forward
representation
Backward representation
(Feynman-Kac formula)
u ( y, t )dy  P  ( Bt  dy )
u( y, t )  Eu( Bt  y,0)
y

0
t
Multidimensional Brownian motion
1
t
2
t
3
t
B , B , B ,  - independent 1-dimensional
1
t
2
t
Brownian motions
d
t
( B , B , , B )
- d-dimensional Brownian
motion
Feynman-Kac formula (2)
B
x
f (x )
1
u ( x)  V ( x)u ( x)  0
2




x
u ( x)  E f ( B ) exp   V ( Bs )ds  


 0



Invariance (3)
The d-dimensional Brownian motion is invariant
under isometries of the d-dimensional space.
It also inherits invariance properties of the
1-dimensional Brownian motion.
1
1
2
2
exp(  x1 / 2)
exp(  x2 / 2)
2
2
1
2
2

exp( ( x1  x2 ) / 2)
2
Conformal invariance
Bt
f
f ( Bt )
analytic
{ f ( Bt )  f ( B0 ), t  0}
has the same distribution as
t
{Bc (t ) , t  0}, c(t )   | f ( Bs ) | ds
2
0
The Ito formula
Disappearing terms (1)
t
t
1
f ( Bt )  f ( B0 )   f ( Bs )dBs   f ( Bs )ds
20
0
If
f  0
then
t
f ( Bt )  f ( B0 )   f ( Bs )dBs
0
Brownian martingales
Theorem (Martingale representation theorem).
{Brownian martingales} = {stochastic integrals}
t
M t   X s dBs
0
E ( M t | M s )  M s , M t  Ft   {Bs , s  t}
B
The Ito formula
Disappearing terms (2)

f (t , Bt )  f (t , B0 )  
f ( s, Bs )dBs
x
0
t

1 

f ( s, Bs )ds   2 f ( s, Bs )ds
s
2 0 x
0
t
t
2
Ef (t , Bt )  Ef (t , B0 )

1
2
 E
f ( s, Bs )ds  E  2 f ( s, Bs )ds
s
2 0 x
0
t
t
Mild modifications of BM
Mild = the new process corresponds
to the Laplacian
(i) Killing – Dirichlet problem
(ii) Reflection – Neumann problem
(iii) Absorption – Robin problem
Related models – diffusions
dX t   ( X t )dBt   ( X t )dt
(i) Markov property – yes
(ii) Martingale – only if   0
(iii) Gaussian – no, but Gaussian tails
Related models – stable processes
Brownian motion –
Stable processes –
dB  (dt )
1/ 
dX  (dt )
1/ 2
(i) Markov property – yes
(ii) Martingale – yes and no
(iii) Gaussian – no
Price to pay: jumps, heavy tails,
0   2
022
Related models – fractional BM
1/ 
dX  (dt )
(i) Markov property – no
(ii) Martingale – no
(iii) Gaussian – yes
(iv) Continuous
1  
1 2  
Related models – super BM
Super Brownian motion is related to
u  u
2
and to a stochastic PDE.
Related models – SLE
Schramm-Loewner Evolution is a model
for non-crossing conformally invariant
2-dimensional paths.
Path properties
(i) t  Bt
(ii)
(iii)
(iv)
is continuous a.s.
t  Bt is nowhere differentiable a.s.
t  Bt is Holder (1 / 2   )
Local Law if Iterated Logarithm
Bt
lim sup
1
t 0
2t log | log t |
Exceptional points
Bt
lim sup
1
t 0
2t log | log t |
For any fixed s>0, a.s.,
Bt  Bs
lim sup
1
t s
2(t  s) log | log( t  s) |
There exist s>0, a.s., such that
Bt  Bs
lim sup
 (0, )
t s
2(t  s)
Cut points
For any fixed t>0, a.s., the 2-dimensional
Brownian path contains a closed loop
around Bt in every interval (t , t   )
Almost surely, there exist t  (0,1)
such that B([0, t ))  B((t ,1])  
Intersection properties
(d  1) a.s., t s  t
Bs  Bt
(d  2) t a.s. s  t
Bs  Bt
1
a.s., x  R Card ( B ( x))  
2
1
(d  3) a.s., x  R Card ( B ( x))  2
3
1
a.s., x  R Card ( B ( x))  2
3
1
(d  4) a.s., x  R Card ( B ( x))  1
4
Intersections of random sets
dim( A)  dim( B)  d

A B  
The dimension of Brownian trace is 2
in every dimension.
Invariance principle
(i) Random walk converges to Brownian
motion (Donsker (1951))
(ii) Reflected random walk converges
to reflected Brownian motion
2
(Stroock and Varadhan (1971) - C domains,
B and Chen (2007) – uniform domains, not all
domains)
(iii) Self-avoiding random walk in 2 dimensions
converges to SLE (200?)
(open problem)
Local time
t
1
Lt  lim
1
ds
{



B


}
s
 0 2 
0
M t  sup Bs
s t
Local time (2)
D
{Lt ,0  t  1}  {M t ,0  t  1}
D
{M t  Bt ,0  t  1}  {| B |t ,0  t  1}
Local time (3)
 t  inf {Ls  t}
s 0
Inverse local time is a stable process
with index ½.
References
R. Bass Probabilistic Techniques in
Analysis, Springer, 1995
 F. Knight Essentials of Brownian Motion
and Diffusion, AMS, 1981
 I. Karatzas and S. Shreve Brownian
Motion and Stochastic Calculus, Springer,
1988
