Brownian Motion

Download Report

Transcript Brownian Motion

Brownian Motion
Chuan-Hsiang Han
November 24, 2010
Symmetric Random Walk
Given ฮฉโˆž , โ„ฑ, ๐ ; let ๐œ” = ๐œ”1 , ๐œ”2 , ๐œ”3 โ‹ฏ โˆˆ ฮฉโˆž
๐Ÿ
and ๐ ๐ป = ๐ ๐‘ป = , and ๐œ”๐‘› denotes the
๐Ÿ
outcome of ๐‘›th toss. Define the r.v.'s
โˆž
๐‘‹๐‘—
that for each ๐‘—
๐‘—=1
+1,
๐‘‹๐‘— =
โˆ’1,
๐‘–๐‘“ ๐œ”๐‘— = ๐ป
๐‘–๐‘“๐œ”๐‘— = ๐‘‡
A S.R.W. is a process ๐‘€๐‘˜ โˆž
๐‘˜=0 such that ๐‘€0 = 0
๐‘˜
and ๐‘€๐‘˜ = ๐‘—=1 ๐‘‹๐‘— , ๐‘˜ = 1,2, โ‹ฏ .
Independent Increments of S.R.W.
Choose 0 = ๐‘˜0 < ๐‘˜1 < โ‹ฏ < ๐‘˜๐‘š , the r.v.s ๐‘€๐‘˜1 =
๐‘€๐‘˜1 โˆ’ ๐‘€๐‘˜0 , ๐‘€๐‘˜2 โˆ’ ๐‘€๐‘˜1 , โ‹ฏ ๐‘€๐‘˜๐‘š โˆ’ ๐‘€๐‘˜๐‘šโˆ’1 are
independent, where the increment is defined by
๐‘˜๐‘–+1
๐‘€๐‘˜๐‘–+1 โˆ’ ๐‘€๐‘˜๐‘– = ๐‘—=๐‘˜๐‘– +1 ๐‘‹๐‘— .
Note:
(1) Increments are independent.
(2) The increment ๐‘€๐‘˜๐‘–+1 โˆ’ ๐‘€๐‘˜๐‘– has mean 0 and
variance ๐‘˜๐‘–+1 โˆ’ ๐‘˜๐‘– .(Stationarity)
Martingale Property of S.R.W.
For any nonnegative integers ๐‘˜ > ๐‘™,
๐ธ ๐‘€๐‘™ โ„ฑ๐‘˜ = ๐ธ ๐‘€๐‘™ โˆ’ ๐‘€๐‘˜ + ๐‘€๐‘˜ โ„ฑ๐‘˜ = ๐‘€๐‘˜
โ„ฑ๐‘˜ contains all the information of the first ๐‘˜ coin
tosses.
If R.W. is not symmetric, it is not a martingale.
Markov Property of S.R.W.
For any nonnegative integers ๐‘˜ > ๐‘™ and any
integrable function ๐‘“
๐ธ ๐‘“ ๐‘€๐‘™ โ„ฑ๐‘˜ = ๐ธ ๐‘“ ๐‘€๐‘™ โˆ’ ๐‘€๐‘˜ + ๐‘€๐‘˜ โ„ฑ๐‘˜
๐‘™โˆ’๐‘˜
=
๐ถ ๐‘™ โˆ’ ๐‘˜, ๐‘–
๐‘–=0
1
2
๐‘–
1
2
๐‘™โˆ’๐‘˜โˆ’๐‘–
๐‘“ 2๐‘– โˆ’ ๐‘™ + ๐‘˜
Quadratic Variation of S.R.W.
The quadratic variation up to time ๐‘˜ is defined
to be
๐‘˜
๐‘€, ๐‘€
๐‘˜
=
๐‘€๐‘— โˆ’ ๐‘€๐‘—โˆ’1
2
=๐‘˜
๐‘—=1
Note the difference between ๐‘‰๐‘Ž๐‘Ÿ ๐‘€๐‘˜ = ๐‘˜ (an
average over all paths), and ๐‘€, ๐‘€ ๐‘˜ = ๐‘˜.
(pathwise property)
Scaled S.R.W.
Goal: to approximate Brownian Motion
1
๐‘›
๐‘Š
๐‘ก๐‘– =
๐‘€๐‘›๐‘ก๐‘– ๐‘›๐‘ก๐‘– โˆˆ๐‘+
๐‘›
1
๐‘›
1. new time interval is "very small" of instead of 1
2. magnitude is "small" of
1
๐‘›
instead of 1.
For any ๐‘ก โˆˆ 0, โˆž , ๐‘Š ๐‘› ๐‘ก can be defined as a
linear interpolation between the nearest ๐‘ก๐‘– such
that ๐‘ก๐‘– โ‰ค ๐‘ก < ๐‘ก๐‘–+1 .
Properties of Scaled S.R.W.
(i) independent increments: for any 0 = ๐‘ก0 < ๐‘ก1 < โ‹ฏ <
๐‘ก๐‘š , ๐‘Š
๐‘Š
๐‘›
๐‘›
๐‘ก1 โˆ’ ๐‘Š
๐‘ก2 โˆ’ ๐‘Š
๐‘›
๐‘›
๐‘ก1
๐‘ก0
,
,โ‹ฏ ๐‘Š
๐‘›
๐‘ก๐‘š โˆ’
(iii) Martingale property
๐ธ ๐‘Š ๐‘› ๐‘ก โ„ฑ๐‘  = ๐‘Š ๐‘› ๐‘  .
(iv) Markov Property: for any function ๐‘“, these exists a function ๐‘” so
that
๐ธ ๐‘“ ๐‘Š ๐‘› ๐‘ก โ„ฑ๐‘  = ๐‘” ๐‘Š ๐‘› ๐‘  .
(v) Quadratic variation: for any ๐‘ก โ‰ฅ 0,
๐‘›๐‘ก
๐‘Š
๐‘›
๐‘›๐‘ก
=
๐‘—=1
,๐‘Š
๐‘›
๐‘ก =
๐‘Š
๐‘—=1
1
= ๐‘ก.
๐‘›
๐‘›
๐‘—
โˆ’๐‘Š
๐‘›
๐‘›
๐‘—โˆ’1
๐‘›
๐‘›๐‘ก
2
=
๐‘—=1
1
๐‘‹๐‘—
๐‘›
2
Limiting (Marginal) Distribution of
S.R.W.
Theorem 3.2.1. (Central Limit Theorem)
For any fixed ๐‘ก โ‰ฅ 0,
๐‘Š
๐‘›
๐‘ก
๐‘›โ†‘โˆž
๐‘‹ โ‰œ ๐‘Š๐‘ก ~๐’ฉ 0, ๐‘ก in dist.
or
๐‘ƒ ๐‘Š
๐‘›
๐‘ก โ‰ค๐‘ฅ
๐‘›โ†‘โˆž
๐‘ฅ
โˆ’โˆž
Proof: shown in class.
1
2๐œ‹๐‘ก
๐‘’
โˆ’๐‘ง 2 2๐‘ก
๐‘‘๐‘ง .
A Numerical Example
๐‘ƒ ๐œ”: 0 โ‰ค ๐‘Š 100 0.25 โ‰ค 0.2
= ๐‘ƒ ๐œ”: 0 โ‰ค ๐‘€25 โ‰ค 2 = 0.1555
0.2
2 โˆ’2๐‘ง 2
๐‘ƒ ๐œ”: 0 โ‰ค ๐‘Š 0.25 โ‰ค 0.2 =
๐‘’
๐‘‘๐‘ง
2๐œ‹
0
โ‰ˆ 0.1554
Log-Normality as the Limit of the
Binomial Model
Theorem 3.2.2. (Central Limit Theorem)
For any fixed ๐‘ก โ‰ฅ 0,
๐‘†๐‘› ๐‘ก = ๐‘† 0
=๐‘† 0
๐ป๐‘›๐‘ก ๐‘‡๐‘›๐‘ก ๐‘›โ†‘โˆž
๐‘ข๐‘› ๐‘‘๐‘›
๐‘†
๐œŽ2 ๐‘ก
โˆ’
โˆ’๐œŽ๐‘Š๐‘ก
2
๐‘’
๐‘ก
in the distribution sense, where ๐‘ข๐‘› = 1 +
๐‘‘๐‘› = 1 โˆ’
๐œŽ
,and
๐‘›
๐‘ท ๐œ”=๐ป =
1+๐‘Ÿโˆ’๐‘‘๐‘›
๐‘ข๐‘› โˆ’๐‘‘๐‘›
๐œŽ
,
๐‘›
What is Brownian Motion?
"If ๐‘Š is a continuous process with independent
increments that are normally distributed, then
๐‘Š is a Brownian motion."
Standard Brownian Motions
check Definition 3.3.1 in the text.
Definition of SBM: Let the stochastic process
๐‘Š๐‘ก , ๐‘ก โ‰ฅ 0 under a probability space
ฮฉ, โ„ฑ, P be continuous and satisfy:
1. ๐‘Š0 = 0
2. ๐‘Š๐‘ก+๐‘  โˆ’ ๐‘Š๐‘ก ~๐’ฉ 0, ๐‘ 
3. ๐‘Š๐‘ก+๐‘  โˆ’ ๐‘Š๐‘ก is independent of ๐‘Š๐‘ก๐‘– โˆ’ ๐‘Š๐‘ก๐‘–+1 for
๐‘ก0 < โ‹ฏ ๐‘ก๐‘› = ๐‘ก.
Covariance Matrix
Check ๐ถ๐‘œ๐‘ฃ ๐‘Š๐‘  , ๐‘Š๐‘ก = ๐‘š๐‘–๐‘› ๐‘ , ๐‘ก for any
nonnegative ๐‘  and ๐‘ก
๐‘‡
For any vector ๐‘‰ = ๐‘Š๐‘ก1 , ๐‘Š๐‘ก2 , โ‹ฏ , ๐‘Š๐‘ก๐‘š with
0 โ‰ค ๐‘ก1 โ‰ค โ‹ฏ โ‰ค ๐‘ก๐‘š ,
๐‘ก1 ๐‘ก1 โ‹ฏ ๐‘ก1
๐‘ก1 ๐‘ก2 โ‹ฏ ๐‘ก2
๐‘‡
๐ถ๐‘œ๐‘ฃ ๐‘‰๐‘‰ =
โ‰œ๐ถ
โ‹ฎ
โ‹ฎ โ‹ฎ
๐‘ก1 ๐‘ก2 โ‹ฏ ๐‘ก๐‘š
In fact, ๐‘‰~๐’ฉ 0, ๐ถ .
Joint Moment-Generating Function of BM
๐œ‘ ๐‘ข1 , ๐‘ข2 , โ‹ฏ , ๐‘ข๐‘š = ๐ธ ๐‘’๐‘ฅ๐‘ ๐‘ข โˆ™ ๐‘‰
= ๐ธ ๐‘’๐‘ฅ๐‘ ๐‘ข1 ๐‘Š๐‘ก1 + ๐‘ข2 ๐‘Š๐‘ก2 + โ‹ฏ + ๐‘ข๐‘š ๐‘Š๐‘ก๐‘š
1
= ๐‘’๐‘ฅ๐‘
๐‘ข1 + ๐‘ข2 + โ‹ฏ + ๐‘ข๐‘š 2 ๐‘ก1
2
1
+ ๐‘ข2 + โ‹ฏ + ๐‘ข๐‘š 2 ๐‘ก2 โˆ’ ๐‘ก1 + โ‹ฏ
2
Alternative Characteristics of Brownian
Motion (Theorem 3.3.2)
For any continuous process ๐‘Š๐‘ก , ๐‘ก โ‰ฅ 0 with ๐‘Š0 = 0,
the following three properties are equivalent.
(i) increments are independent and normally
distributed.
(ii) For any 0 โ‰ค ๐‘ก0 โ‰ค ๐‘ก1 โ‰ค โ‹ฏ โ‰ค ๐‘ก๐‘š ,
๐‘Š๐‘ก1 , ๐‘Š๐‘ก2 , โ‹ฏ , ๐‘Š๐‘ก๐‘š are jointly normally distributed.
(ii) ๐‘Š๐‘ก1 , ๐‘Š๐‘ก2 , โ‹ฏ , ๐‘Š๐‘ก๐‘š has the joint momentgenerating function as before.
If any of the three holds, then ๐‘Š๐‘ก , ๐‘ก โ‰ฅ 0, is a SBM.
Filtration for B.M.
Definition 3.3.3 Let ฮฉ, โ„ฑ, ๐‘ท be a probability space
on which the B.M. ๐‘Š๐‘ก ๐‘กโ‰ฅ0 is defined. A filtration
for the B.M. is a collection of ๐œŽ-algebras โ„ฑ๐‘ก ๐‘กโ‰ฅ0 ,
satisfying
(i) (Information accumulates) For 0 โ‰ค ๐‘  โ‰ค ๐‘ก, โ„ฑ๐‘  โŠ†
โ„ฑ๐‘ก .
(ii) (Adaptivity) each ๐‘Š๐‘ก is โ„ฑ๐‘ก -measurable.
(iii) (Independence of future increments) 0 โ‰ค ๐‘ก < ๐‘ข ,
the increment ๐‘Š๐‘ข โˆ’ ๐‘Š๐‘ก is independent of โ„ฑ๐‘ก . [Note,
this property leads to Efficient Market Hypothesis.]
Martingale property
Theorem 3.3.4 B.M. is a martingale.
Proof:
๐ธ ๐‘Š๐‘ก |โ„ฑ๐‘  = โ‹ฏ = ๐‘Š๐‘ 
Levy's Characteristics of Brownian
Motion
The process ๐‘Š๐‘ก is SBM iff the conditional
characterization function is
๐ธ ๐‘’ ๐‘–๐‘ข
๐‘Š๐‘ก โˆ’๐‘Š๐‘ฅ
|โ„ฑ๐‘  =
๐‘ข2 ๐‘กโˆ’๐‘ 
โˆ’
2
๐‘’
Variations: First-Order (Total) Variation
Given a function ๐‘“ defined on 0, ๐‘‡ , the total
variation ๐‘‡๐‘‰๐‘‡ ๐‘“ is defined by
๐‘›โˆ’1
๐‘‡๐‘‰๐‘‡ ๐‘“ = lim
ฮ  โ†’0
๐‘“ ๐‘ก๐‘—+1 โˆ’ ๐‘“ ๐‘ก๐‘—
๐‘—=0
where the partition ฮ  = ๐‘ก0 = 0, ๐‘ก1 , โ‹ฏ , ๐‘ก๐‘› = ๐‘‡
and ฮ  = ๐‘š๐‘Ž๐‘ฅ๐‘–=0,โ‹ฏ,๐‘›โˆ’1 ๐‘ก๐‘—+1 โˆ’ ๐‘ก๐‘—
If ๐‘“ is differentiable,
๐‘“ ๐‘ก๐‘—+1 โˆ’ ๐‘“ ๐‘ก๐‘— = ๐‘“โ€ฒ ๐‘ก๐‘—โ‹† ๐‘ก๐‘—+1 โˆ’ ๐‘ก๐‘—
for some ๐‘ก๐‘—โ‹† ๐œ– ๐‘ก๐‘—+1 , ๐‘ก๐‘— . Then
๐‘‡๐‘‰๐‘‡ ๐‘“ = lim
lim
ฮ  โ†’0
ฮ  โ†’0
๐‘›โˆ’1
โ‹†
๐‘“โ€ฒ
๐‘ก
๐‘—
๐‘—=0
๐‘›โˆ’1
๐‘—=0
๐‘“ ๐‘ก๐‘—+1 โˆ’ ๐‘“ ๐‘ก๐‘—
๐‘ก๐‘—+1 โˆ’ ๐‘ก๐‘— =
๐‘‡
0
=
๐‘“โ€ฒ ๐‘ก ๐‘‘๐‘ก.
Quadratic Variation
Def. 3.4.1 The quadratic variation of ๐‘“ up to
time ๐‘‡ is defined by
๐‘›โˆ’1
๐‘“, ๐‘“
๐‘‡
= lim
ฮ  โ†’0
๐‘“ ๐‘ก๐‘—+1 โˆ’ ๐‘“ ๐‘ก๐‘—
๐‘—=0
2
If ๐‘“ is continuous differentiable,
๐‘“ ๐‘ก๐‘—+1 โˆ’ ๐‘“ ๐‘ก๐‘— = ๐‘“โ€ฒ ๐‘ก๐‘—โ‹† ๐‘ก๐‘—+1 โˆ’ ๐‘ก๐‘—
for some ๐‘ก๐‘—โ‹† ๐œ– ๐‘ก๐‘—+1 , ๐‘ก๐‘— . Then
๐‘“, ๐‘“ ๐‘‡ = lim ๐‘›โˆ’1
๐‘“ ๐‘ก๐‘—+1
๐‘—=0
ฮ  โ†’0
๐‘›โˆ’1
โ‹† 2
lim ๐‘—=0 ๐‘“โ€ฒ ๐‘ก๐‘—
๐‘ก๐‘—+1 โˆ’ ๐‘ก๐‘—
ฮ  โ†’0
๐‘‡
2
๐‘“โ€ฒ
๐‘ก
๐‘‘๐‘ก
0
โˆ’ ๐‘“ ๐‘ก๐‘—
= lim
2
ฮ  โ†’0
โ‰ค
ฮ  ×
Quadratic Variation of B.M.
Thm. 3.4.3 Let ๐‘Š๐‘กโ‰ฅ0 be a Brownian Motion.
Then ๐‘Š, ๐‘Š ๐‘‡ = ๐‘‡ for all ๐‘‡ โ‰ฅ 0 a.s..
B.M. accumulates quadratic variation at rate one
per unit time.
Informal notion:
๐‘‘๐‘Š๐‘ก โˆ™ ๐‘‘๐‘Š๐‘ก = ๐‘‘๐‘ก, ๐‘‘๐‘Š๐‘ก โˆ™ ๐‘‘๐‘ก = 0, ๐‘‘๐‘ก โˆ™ ๐‘‘๐‘ก = 0
Geometric Brownian Motion
The geometric Brownian motion is a process of the
following form
๐‘†๐‘ก = ๐‘†0 ๐‘’๐‘ฅ๐‘ ๐œŽ๐‘Š๐‘ก + ๐œ‡ โˆ’ ๐œŽ 2 2 ๐‘ก .
where ๐‘†0 is the current value, ๐‘Š๐‘กโ‰ฅ0 is a B.M., ๐œ‡ is the drift
and ๐œŽ > 0 is the volatility.
For each partition ๐‘ก0 = 0, ๐‘ก1 , โ‹ฏ , ๐‘ก๐‘› = ๐‘‡ , define the log
returns
๐‘†๐‘ก๐‘—+1
๐‘™๐‘œ๐‘”
= ๐œŽ ๐‘Š๐‘ก๐‘—+1 โˆ’ ๐‘Š๐‘ก๐‘— + ๐œ‡ โˆ’ ๐œŽ 2 2 ๐‘ก๐‘—+1 โˆ’ ๐‘ก๐‘—
๐‘†๐‘ก๐‘—
Volatility Estimation of GBM
The realized variance is defined by
2
๐‘›โˆ’1
๐‘†๐‘ก๐‘—+1
๐‘™๐‘œ๐‘”
๐‘†๐‘ก๐‘—
๐‘—=0
which converges to ๐œŽ 2 ๐‘‡ as ฮ  โ†’ 0
BM is a Markov process
Thm. 3.5.1 Let ๐‘Š๐‘กโ‰ฅ0 be a B.M. and โ„ฑ๐‘กโ‰ฅ0 be a
filtration for this B.M.. Then
(1)Wt0 is a Markov process.
Thm. 3.6.1.
(2)๐‘๐‘ก = ๐‘’๐‘ฅ๐‘ ๐œŽ๐‘Š๐‘ก โˆ’
1 2
๐œŽ ๐‘ก
2
is martingale.
(We call ๐‘๐‘ก exponential martingale.)
Note: ๐ธ ๐‘๐‘ก = 1