Transcript Slides

ME 475/675 Introduction to
Combustion
Lecture 35
Midterm 2
• Average = 84
Announcements
• HW 14 Ch. 8 (1, 13, 15, 16)
• Due Friday, November 20, 2015
• Integrated BS/MS Degree
• http://www.unr.edu/engineering/academics/accelerated
• Term Project
• http://wolfweb.unr.edu/homepage/greiner/teaching/MECH.475.675.Combustion/TermProjectAssignment.pdf
• Due December 4, 2015
• Email Hasib ([email protected]) to schedule times to complete stove
construction and measurements in PE 113
• Bring one or two aluminum cans with you
Laminar Flame Propagation Demonstration
• Courtesy of Corey Trujillo (2015)
• Slow motion
• Full speed
• How to
Flame Quenching, Mixture Flammability, Ignition
• What does it take to ignite a mixture?
• What does it take to extinguish a flame?
• “Williams Criteria” (a rough model, rule of thumb)
• Ignition will occur if enough energy is added to a slab of thickness 𝛿 (laminar
flame thickness) to raise it to the adiabatic flame temperature, Tad.
• A flame will be sustained if its rate of chemical heat release insides a slab is
roughly equal to heat loss by conduction out of the slab.
Last time:
Quenching Distance Data
Table 8.4 page 291
• Smallest dimension that allows flame to
pass
•
• Near stoichiometric conditions many
hydrocarbon fuels require a mesh sizes
around 2 mm to quench
• For Ethylene and (C2H4) and hydrogen (H2), it
must be smaller
• For non-stoichiometric conditions, larger
meshes will quench flame
Flammability Limits
𝜈= 𝐴 𝐹
𝑠𝑡𝑜𝑖𝑐
• Flames only propagate within certain equivalence ratio ranges
• Φ𝑚𝑖𝑛 < Φ < Φ𝑚𝑎𝑥 ,
• Φ𝑚𝑖𝑛 = Φ𝑙𝑜𝑤𝑒𝑟 = Φ𝑙𝑒𝑎𝑛
• Φ𝑚𝑎𝑥 = Φ𝑢𝑝𝑝𝑒𝑟 = Φ𝑟𝑖𝑐ℎ
• See page 291, Table 8.4 for limits
• Φ=
𝐴
𝐹 𝑠𝑡𝑜𝑖𝑐
𝐴
𝐹
• 𝜒𝐶𝐻4 ,𝐿𝑒𝑎𝑛 =
𝜈
=𝐴 =
𝐹
𝑁𝐶𝐻4
𝑚𝐹 𝑚𝐴,𝑆𝑡
𝑚𝐹,𝑆𝑡 𝑚𝐴
1
𝑁𝐶𝐻4 +𝑁𝐴𝑖𝑟
=
𝑁
1+𝑁 𝐴𝑖𝑟
𝐶𝐻4
=
1
𝑚
𝑀𝑊𝐶𝐻
1+𝑚 𝐴𝑖𝑟 𝑀𝑊 4
𝐶𝐻4
𝐴𝑖𝑟
Ignition
𝑑𝑇
𝑑𝑥
𝑅𝐶𝑟𝑖𝑡
• The minimum electrical spark energy capable of igniting a flammable mixture.
• It is dependent on the temperature, pressure and equivalence ratio of the mixture
• What is the critical (minimum) radius of a spark that will propagate
• 𝑄′′′ 𝑉 > 𝑄𝑐𝑜𝑛𝑑
•
−𝑚𝐹′′′
2
• 𝑅𝑐𝑟𝑖𝑡
≥
•
𝑆𝐿2
Δℎ𝑐
4
3
𝜋𝑅𝑐𝑟𝑖𝑡
3
3𝑘 𝑇𝑏 −𝑇𝑢
′′′ Δℎ
−𝑚𝐹
𝑐
= 2𝛼 1 + 𝜈
=
′′′
−𝑚𝐹
𝜌𝑢
𝑑𝑇
𝑇𝑏 −𝑇𝑢
2
>𝑘
~𝑘 4𝜋𝑅𝑐𝑟𝑖𝑡
𝑑𝑥 𝑅𝐶𝑟𝑖𝑡
𝑅𝑐𝑟𝑖𝑡
2𝛼 1+𝜈
3𝑘 𝑇𝑏 −𝑇𝑢
6𝛼2
𝛼
6
=
;
𝑅
≥
6
=
𝑐𝑟𝑖𝑡
𝜌𝑢 𝑆𝐿2 𝑐𝑝 1+𝜈 𝑇𝑏 −𝑇𝑢
𝑆𝐿2
𝑆𝐿
2
;
2
4𝜋𝑅𝑐𝑟𝑖𝑡
1
′′′
−𝑚𝐹
=
2𝛼 1+𝜈
𝜌𝑢 𝑆𝐿2
; Δℎ𝑐 = 𝑐𝑝 1 + 𝜈 𝑇𝑏 − 𝑇𝑢 ; 𝛼 =
𝑘
;
𝜌𝑢 𝑐𝑝
𝛿
𝛿=
2𝛼
𝑆𝐿
Energy to bring critical volume from Tu to Tb
• 𝐸𝑖𝑔𝑛 = 𝑚𝑐𝑟𝑖𝑡 𝑐𝑝 𝑇𝑏 − 𝑇𝑢
• 𝑚𝑐𝑟𝑖𝑡 =
4
3
𝜋𝑅𝑐𝑟𝑖𝑡
𝜌𝑏
3
• 𝐸𝑖𝑔𝑛 = 61.56𝑃
•
•
=
4
𝜋
3
𝛼 3
6
𝜌𝑏
𝑆𝐿
𝛼 3 𝑐𝑝 𝑇𝑏 −𝑇𝑢
𝑆𝐿
𝑅𝑏
𝑇𝑏
𝑇𝑢 𝑇 0.75
𝛼~
;
𝑃
𝐸𝐴
0.375 0
𝑆𝐿 ~𝑇
𝑃 𝑒𝑥𝑝
2𝑅𝑢 𝑇𝑏
= 61.56
𝑃
~ 3 ~𝑃−2
𝑃
• not normally considered reliable
• Agrees with measurements at low pressure
• Need lots of energy at low pressure
• Hard to restart jet engines at high altitudes
• 𝐸𝑖𝑔𝑛 decreases as Tu increases
• Table 8.5 page 298 Different fuels
𝛼 3 𝑃
𝑆𝐿
𝑅𝑏 𝑇 𝑏
(why 𝜌𝑏 and not 𝜌𝑢 ?)
Data
• Acetylene (C2H2), hydrogen (H2) and ethylene (C2H4) require very little energy to ignite
• Depends on fuel and equivalence ratio
• And initial (unburned) temperature and pressure (next slide)
𝑚𝑒𝑡ℎ𝑎𝑛𝑒
•
Chapter 16 Detonations
• Flames (deflagrations) are subsonic
• Detonations are supersonic
• Flame speed 𝑣𝑥 > 𝑐 =
• Mach Number: 𝑀𝑎 =
𝑣𝑥
𝑐
𝛾𝑅𝑇 =
𝛾
𝑅𝑢
𝑇,
𝑀𝑊𝑚𝑖𝑥
𝛾=
𝑐𝑃
𝑐𝑣
>1
>1
• Sound speed in room temperature air
𝑃𝑎 𝑚3
• 𝑐=
1.4
8315𝑘𝑚𝑜𝑙 𝐾
𝑘𝑔
𝑘𝑚𝑜𝑙
28.85
298𝐾 = 347
𝑚 3600𝑠
𝑠
ℎ𝑟
100𝑐𝑚 1𝑖𝑛
𝑓𝑡 1 𝑚𝑖𝑙𝑒
𝑚 2.54𝑐𝑚 12 𝑖𝑛 5280 𝑓𝑡
= 776
𝑚𝑖𝑙𝑒
ℎ𝑟
= 0.21
𝑚𝑖𝑙𝑒
𝑠
• 𝑐 increases with increasing T and decreasing 𝑀𝑊𝑚𝑖𝑥
• A detonation is a shockwave sustained by combustion energy release
• 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑠𝑖𝑜𝑛 𝑠ℎ𝑜𝑐𝑘 → ℎ𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 → 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 → 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠ℎ𝑜𝑐𝑘
• Mass flux rates
•
′′
𝑚𝐷𝑒𝑓
~
𝑘𝑔
1 2
𝑚 𝑠
′′
• 𝑚𝐷𝑒𝑡
~ 2000
𝑘𝑔
𝑚2 𝑠
• https://www.youtube.com/watch?v=r17czTWHFmU&index=1&list=PL8ilW_a2YUUC3fWrYT06kq8x_LuEHGJPE
Confined planar and spherical systems
Hot Compression Shock
Combustible Mixture
𝑣𝑥1
Combustion Zone
Products of Combustion
High Temperature T and Pressure P
Low density, r
Combustible Mixture
𝑣𝑥2
• Closed tube or expanding spark (both have confined hot products)
• Expansion of hot gases behind shock may be much faster than laminar or
turbulent flame speed
• Flame Frame
2
1
Shock
Detonation
• Unknowns: 𝑃2 , 𝑇2 , 𝜌2 , 𝑐2 =
𝛾𝑅𝑇2 , 𝑎𝑛𝑑 𝑀𝑎2 (𝑣𝑥,2 )
Typical Properties
•
Analysis
1
2
Detonation
• One-dimensional, const. area, 𝑃𝑉 = 𝑁𝑅𝑢 𝑇; 𝑐𝑝,1 = 𝑐𝑝,2 ≠ 𝑓𝑛 𝑇 ; 𝑄 = 0; no body forces
𝑚
• Mass Conservation:
= 𝑚′′ = 𝜌1 𝑣𝑥,1 = 𝜌2 𝑣𝑥,2
(𝜌1 ≠ 𝜌2 compressible)
• 𝑣𝑥,1 =
𝑚′′
;
𝜌1
• Momentum:
𝑣𝑥,2 =
𝑚′′
𝜌2
𝐴
𝐹 = Δ𝑀 (Rate of momentum flux change)
2
2
• 𝐴 𝑃1 − 𝑃2 = 𝐴 𝜌2 𝑣𝑥,2
− 𝜌1 𝑣𝑥,1
2
2
• 𝑃1 + 𝜌1 𝑣𝑥,1
= 𝑃2 + 𝜌2 𝑣𝑥,2
• Combine (find relation between 𝑃2 and 𝑣2 =
•
•
•
1
𝜌2
2
2
𝑚′′
𝑚′′
1
1
𝑃1 + 𝜌1
= 𝑃2 + 𝜌2
; 𝑚′′ 2
−
𝜌1
𝜌2
𝜌1
𝜌2
𝑃2 −𝑃1
𝑃 −𝑃
− 𝑚′′ 2 =
= 2 1 < 0, where 𝑣 = 1
1 𝜌2 −1 𝜌1
𝑣2 −𝑣1
𝑃2 = 𝑃1 − 𝑚′′ 2 𝑣2 − 𝑣1 = − 𝑚′′ 2 𝑣2 + 𝑃1 +
• As 𝑣2 increased 𝑃2 decreases.
given 𝑃1 and 𝑣1 )
= 𝑃2 − 𝑃1
𝜌
𝑚′′
2
𝑣1
Rayleigh Line
1
2
Detonation
• Momentum and mass conservation require
• −
𝑚′′ 2 =
• 𝑃2 = 𝑃1 −
𝑃2 −𝑃1
𝑃2 −𝑃1
=
< 0 (negative slope)
1 𝜌2 −1 𝜌1
𝑣2 −𝑣1
𝑚′′ 2 𝑣2 − 𝑣1 = − 𝑚′′ 2 𝑣2 + 𝑃1 +
• No solutions are possible in quadrants A and B
• If 𝑣2 > 𝑣1 𝑣𝑥,2 > 𝑣𝑥,1 , then 𝑃2 < 𝑃1
• If 𝑣2 < 𝑣1 𝑣𝑥,2 < 𝑣𝑥,1 , then 𝑃2 > 𝑃1
𝑚′′
2
𝑣1
Energy Conservation
1
• Include kinetic energy
• 𝑚 ℎ1 +
2
𝑣𝑥1
2
• ℎ 𝑇 =
•
𝑜
𝑌
ℎ
1 𝑖 𝑓,𝑖
•
𝑜
𝑌
ℎ
1 𝑖 𝑓,𝑖
= 𝑚 ℎ2 +
𝑜
𝑌𝑖 ℎ𝑓,𝑖
2
𝑣𝑥2
2
+ 𝑐𝑝 𝑇1 − 𝑇𝑟𝑒𝑓 +
−
𝑜
𝑌
ℎ
2 𝑖 𝑓,𝑖
• 𝑞 + 𝑐𝑝 𝑇1 − 𝑇2 =
Detonation
𝑇
𝑌𝑖 𝑇 𝑐𝑝,𝑖 𝑑𝑇
𝑟𝑒𝑓
2
𝑣𝑥1
+
2
𝑜
𝑌𝑖 ℎ𝑓,𝑖
=
=
𝑜
𝑜
• 𝑞 = 1 𝑌𝑖 ℎ𝑓,𝑖
− 2 𝑌𝑖 ℎ𝑓,𝑖
=
= heat of combustion
• 𝑞 = 𝑓𝑛 𝑓𝑢𝑒𝑙, 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑟, Φ
𝑇
𝑌𝑖 𝑐𝑝,𝑖 𝑇 𝑑𝑇
𝑟𝑒𝑓
+
𝑜
𝑌
ℎ
2 𝑖 𝑓,𝑖
+ 𝑐𝑝 𝑇1 − 𝑇2 =
2 −𝑣 2
𝑣𝑥2
𝑥1
2
2
+ 𝑐𝑝 𝑇2 − 𝑇𝑟𝑒𝑓 +
2 −𝑣 2
𝑣𝑥2
𝑥1
2
𝑜
𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 𝑌𝑖 ℎ𝑓,𝑖
−
=
𝑜
𝑌
ℎ
𝑖
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑓,𝑖
𝑜
𝑌𝑖 ℎ𝑓,𝑖
+ 𝑐𝑝 𝑇 − 𝑇𝑟𝑒𝑓
2
𝑣𝑥2
2
Rankine-Hugoniot Curve
• 𝑞 + 𝑐𝑝 𝑇1 − 𝑇2 =
2 −𝑣 2
𝑣𝑥2
𝑥1
2
• Eliminate T using ideal gas state,
• and assuming 𝑀𝑊1 = 𝑀𝑊2 so 𝑅1 = 𝑅2 = 𝑅
• 𝑃1 = 𝜌1 𝑅1 𝑇1 ; 𝑅1 = 𝑅𝑢 𝑀𝑊1
• 𝑃2 = 𝜌2 𝑅2 𝑇2 ; 𝑅2 = 𝑅𝑢 𝑀𝑊2
• Also use
𝑐𝑃
𝑅
=
𝑐𝑃
𝑐𝑃 −𝑐𝑣
=
𝛾
;
𝛾−1
𝛾=
𝑐𝑃
𝑐𝑣
>1
• Get… (Homework problem 16.1, p. 637)
•
𝛾
𝑃2
𝛾−1 𝜌2
or
•
𝛾
𝛾−1
−
𝑃1
𝜌1
−
1
2
𝑃2 𝑣2 − 𝑃1 𝑣1 −
𝑃2 − 𝑃1
𝑃2 −𝑃1
2
1
𝜌2
+
𝑣2 + 𝑣1
1
𝜌1
−𝑞 =0
− 𝑞=0
• 𝑃2 versus 𝑣2 is a hyperbola (for given 𝑃1 , 𝑣1 , 𝛾 and 𝑞)
Rankine-Hougoniot Curve
𝑃 = 𝑃2
Rayleigh
Lines
•
𝛾
𝛾−1
𝑃2 𝑣2 − 𝑃1 𝑣1 −
𝑃2 −𝑃1
2
𝑣2 + 𝑣1 − 𝑞 = 0
• It can be shown (take may word for it)
•
•
•
•
•
Above D (tangent), 𝑣𝑥,2 < 𝑐: Strong detonation (small 𝑣2 )
Between D and B, 𝑣𝑥,2 > 𝑐: Weak detonation
Between B and C, impossible (positive slope)
Between C and E, 𝑣𝑥,2 < 𝑐: Weak deflagration (large 𝑣2 )
Below E, 𝑣𝑥,2 > 𝑐: Strong deflagration
• Tangent with Rayleigh Lines
• Upper and lower Chapman-Jouguet points
• Real Detonation at point D (based on stability, c = 1)
• Note
𝑘𝑔
′′
𝑚𝑑𝑒𝑓𝑙𝑎𝑔𝑟𝑎𝑡𝑖𝑜𝑛 ~1 2 ;
𝑚
𝑘𝑔
′′
𝑚𝑑𝑒𝑡𝑜𝑛𝑎𝑡𝑖𝑜𝑛 ~2000 2
𝑚
𝑣 = 𝑣2
End 2015
• Had a little extra time
Example 16.1
• A combustion wave propagates with a mass flux of 3500 kg/(s m2) through a
mixture initially at 298 K and 1 atm. The molecular weights and specific-heat
ratio of the mixture (burned and unburned) are 29.0 kg/kmol and 1.3,
respectively, and the heat release is 3.40x106 J/kg.
• Determine the state (P2, v2) of the burned gas and determine in which region the
state lies on the Rankine-Hougoniot curve.
• Also, determine the Mach number of the burned gas.