下載/瀏覽Download
Download
Report
Transcript 下載/瀏覽Download
CH11
Specialized Devices
指導老師 : 梁治國教授
學生 : 李玉璽
11.1 Programmable OP Amps
DC supply current
Open-loop voltage gain
Input bias current
Slew rate
Unity gain frequency
Input noise voltage
11.2 Instrumentation Amplifiers
Offset voltages and drifts are
minimized
Gain is stabilzed
Nonlinearity is very low
Input impedance is very high
Output impedance is very low
Common-mode rejection is very high
The basic instrumentation amplifier is essentially
a subtraction circuit preceded by two buffer
amplifiers
Basic instrumentation amplifier used for
numerical analysis
Analysis(1)
The current through RG can computed
with Ohm’s Law :
iG
vG 0.1V
100A
RG 1k
The resulting voltage drop across the
feedback resistors :
vR1 vR 2 iG R1
100 A 10k 1V
Analysis(2)
The voltage on the output of A1
(Kirchhoff’s Voltage Law )
v1 ' v1 vR1
2 V 1 V
1 V
Similarly , the voltage at the
output of A2
The output of A3
v2 ' v2 vR 2
2.1 V 1 V
3.1 V
vO v'2 v'1
3.1 V 1 V
2.1 V
Analysis(3)
Some basic algebraic
manipulations to
determine an
important equation
for voltage gain
v'1 v1 vR1
v'2 v2 vR2
v2 v1
iG
RG
vR1 iG R 1
v2 v1 R1
vR2 iG R 2
v2 v1 R2
vO v'1 v'2
RG
RG
Analysis(4)
Substituting and simplifying gives us the
following results
vO v2 vR2 v1 vR1
v2 v1 R2
v2 v1 R1
v2
v1
RG
RG
R1 R2 v2 v1
v2 v1
R
G
Analysis(5)
Since resistors R1 and R2 are equal , we
can replace the expression R1 + R2 with the
expression 2R .
2R
vO v2 v1 1
RG
Analysis(6)
Voltage gain is equal to the output voltage
of an amplifier divided by its input voltage,
and the input voltage to our present circuit
v2 – v1 ; therefore, we can now obtain our
final gain equation
2R
Av
1
RG
11.1
Analysis(7)
This shows us that the gain of the
instrumentation amplifier is determined by the
value of the external resistor RG .In the case of
the circuit in Figure 11.2 , the voltage gain is
computed as
2R
Av
1
RG
20 K
1
1 K
21
11.3 Logarithmic Amplifiers
Whether the amplifiers are constructed from
discrete components or purchased in an
integrated form, the basic operation remains
the same.
Of the log amp , the output voltage is
proportional to the logarithm of the input
voltage.
二極體型(基本型)
電晶體型
差動型
二極體型(基本型)
設計觀念
二極體在偏壓時,其電壓-電流特性方程式約
可表成
iD I S e
vD
VT
換言之
iD
vD VT ln
IS
電路分析
缺點
η值並非固定,與 iD 大小有關
熱電壓 VT 是溫度的函數,隨著溫度而變
逆向飽和電流 I S 對溫度變化甚為敏感,每上升5℃就會
倍增因此,此類對數放大器易受到溫度與電流 iD 等因素
影響
電晶體型
BJT在主動模式下,B-E接
面視為二極體,因此電流
為
iC I S e
v BE
VT
利用電壓電流轉換,將 VI 轉變成
VI
R
,並送入C極
因虛接地,可知 vC 0 ,故讓B極接地,則可因
vBC 0 而讓BJT確實處於主動模式中,並且 vBC vBE
不過對溫度的敏感等缺點依然存在
11.4 Antilogarithmic Amplifiers
電晶體型
差動對型
電晶體型
iC I S e
v BE
VT
vO iC R RI S e
RI S e
vI
VT
必須強調的是,為了讓
npn操作在主動模式,故
輸入信號必須限制於VI<0
v BE
VT
vO R F I ESe
38.9v1
附件一 MC1776
附件二
附件(三)MC3476
Thank you for your attention