Transcript ppt file

Exploring atomic fragmentation
with COLTRIMS
(Cold Target Recoil Ion Momentum
Spectroscopy)
Christina Dimopoulou
Max-Planck-Institut für Kernphysik, Heidelberg
IPHE, Université de Lausanne, 26.05.2003
Experiment
- The “Reaction-Microscope”
Atomic & Molecular Break-Up
- Intense femtosec laser pulses
- Ion induced femtosec fields
Future
- Studies with HCI : HITRAP
- Laser assisted collisions
- Sub-attosec ion induced fields
Momentum Spectroscopy: Principle
champagne
velocity,
angle
sparkling wine
piccolo
landing zone
(detector)
time-of-flight and landing position => initial velocity and angle
i.e. initial momentum vector
Recoil Ion Momentum Spectroscopy
Cold Target: Reaction Microscope
•
supersonic
atomic
jet
Detectors:
• molecules
• position sensitive
• clusters
• multi-hit
Projectile:
• single photons
• intense lasers
electrons
• charged particles
 ~ meV
recoil
ions
 t;x,y,z) ~ eV
Ion Time-of-flight
Ex. Multi-photon
ionisation of Ar
ion trajectory
+Uo
600
100000
10000
counts
counts
400
1000
300
200100
100
1.5 1.0 0.5 0 -0.5 -1.0 -1.5
N=11
p|| [a.u.]
Ar+
+
Ar
500
Ar++
Ar2+
N=12
N=13
H2O+
H2+ 1.8 eV
N=14
10
0
1
40600
0
40650
40700
40750
20000
40000
TOF [ns]
d
40800
60000
40850
80000
+U
detector
a
Experiment
- The “Reaction-Microscope”
Atomic & Molecular Break-Up
- Intense femtosec laser pulses
- Ion induced femtosec fields
Future
- Studies with HCI : HITRAP
- Laser assisted collisions
- Sub-attosec ion induced fields
Single Photons . . . Intense Laser
Target Jet
Ion Detector
Laser
Electron Detector
Ti:Sa Laser
photon energy:
1.5 eV (T=2.7 fs)
pulse length (FWHM): 30 fs
intensity:
Imax~1016 W/cm2
repetition rate:
3 kHz
Multi-photon Single Ionisation
electrons
I
h = 1.56 eV
P = E /c  0
W/cm2
electron
Ee = N h - Ip , N>10
Pe = - PR
e
1013
ER = Ee/MR
Ar1+
Intense Laser: Single Ionisation
Drift momentum
2.
I
q
p y (t0 )  E0 (t0 ) cos(t0 )
Single Photons . . . . Intense
Laser

pulse
Ey(t)
1015
W/cm2
T=2/=2.7 fs
t
h = 80 eV: 1 photon
h = 1.5 eV: > 17 photons
2
t
0
-1 Pion =-P
=e450
t0 = 45
e1
 = 900
t = 90
-2 1 -1 002 1
-2
-1 -4 0-3


Pion ion
 Pmomentum
Helium
p/a.u.
electron
y [a.u.]
t
 = 00
Ey(t)
 = 00
tunneling
0
t0 = 0
py [a.u.]
Helium ion momentum /a.u.
Ne1+
2
1
-2
4
0t
 = 450
-2
0
-2
0
 = 90-4
 -3 -2 -1
2 P3 4 -4
P
ion
Moshammer et al. PRL 2000
4
 =30 2fs
1.
px
px
He1+
electron
0
1
[a.u.]
ppxy [a.u.]
2
3 4
-4
Intense Laser : Double Ionisation
3.1015 W/cm2
Ne2+
sequential
non-sequential
Orders of magnitude
difference due to
e-e correlation
1014
1015
Intensity W/cm2
Larochelle et. al J. Phys. B31 (1998)
1016
1.1015 W/cm2
Ne2+
Moshammer et al. PRL 2000
Ey(t)
Ion Signal (arb. units)
Ne2+
Ey(t)
Ne1+
Non-sequential Double Ionisation
shake - off
2+
Ne
Ne2+
Ey(t)
Fittinghoff et al 1992
coll. tunnelling
Eichmann et al 1999
Double peak structure
Time delay
e1,e2
„rescattering“
Cor kum 1993
Kuchiev 1987
Schafer et al. 1993
~ 200 a.u.
Experiment
- The “Reaction-Microscope”
Atomic & Molecular Break-Up
- Intense femtosec laser pulses
- Ion induced femtosec fields
Future
- Studies with HCI : HITRAP
- Laser assisted collisions
- Sub-attosec ion induced fields
Ion Induced femtosec Fields
Example: Electron Capture
Ne7+
vP = 0.36 a.u.
ppf
Ne6+
ppi
b~5 a.u.
t
I 3 1015 W/cm2
t  b/ vp  0.3 fs
pr
He
Electron Capture: Precision Spectr.
Ne6+
Ne7+
ppf
pp i
Q
pp  pr
vP = 0.36 a.u.
He1+
pr
tr a n s v e r s e m o m e n t u m
/ a u
pr  = Q |pp|
pr|| = Q / vp - vp/2
6
pr
5
4
• scattering angle
• impact parameter
3
2
1
0
Dynamics
Structure
0
Fischer et al.
JPB 2002
2 0
4 0
Q - v a lu e
pr||
6 0
/
e V
Q value: Q = Ebf - Ebi
8 0
•excellent resolution: 0.7eV FWHM
•excellent precision: 3-100 meV
•many states resolved simultaneously
•no selection rules
Scattering
/ mrad
scatteringangle
angle
Q / mrad
0,4
0,3
0,2
0,1
0,0
10
20
30
40
50
60
70
Q-value / eV
Q-value
/ eV
capture into n=4
1500
1500
3
2s4s S
1
2s4p P
2s 4 
1000
1,3
1000
3
2s4d D
counts
counts
counts
counts
Electron Capture: Precision Spectr.
FWHM 0.72 eV
1
2s4d D
500
1
2s4s S
L
x10
Projectile excitation
2p 3 
500
2s 3 
0
0
15
16
17
18
19
20
21
Q value // eV
Q-value
eV
22
23
24
25
10
20
30
40
50
Q value / eV
Q-value
/ eV
60
70
Experiment
- The “Reaction-Microscope”
Atomic & Molecular Break-Up
- Intense femtosec laser pulses
- Ion induced femtosec fields
Future
- Studies with HCI : HITRAP
- Laser assisted collisions
- Sub-attosec ion induced fields
Studies with Highly Charged Ions
Auger cascades
HCI from HITRAP
X-rays
E~keV/amu
t ≈ 1 fs
Formation of ”hollow atoms”
Questions:
1. Precision Spectroscopy
2. Dynamics of formation:
Target
many-electron flux (correlated?)
3. Rearrangement processes
HCI
The HITRAP Reaction Microscope
• Increased Acceptance and Q-Value Resolution
• Coincident detection of ions, electrons and photons
large area ion detector with hole
• multi-hit electron detector (up to 10 e )
• large area photon detectors
•
Gas jet
Grid
Electron detector
+Uext Spectrometer
plates
Projectile beam
0V
0V
Reaction volume
Ion detector
Drift tubes
Experiment
- The “Reaction-Microscope”
Atomic & Molecular Break-Up
- Intense femtosec Laser Pulses
- Ion induced femtosec fields
Future
- Studies with HCI : HITRAP
- Laser assisted collisions
- Sub-attosec ion induced fields
Laser Assisted Electron Capture
Laser & ion induced fields combined
Laser
I ~ 1013 W/cm2, ~ ns
Ne7+
vP = 0.36 a.u.
ppf
Ne6+
ppi
b~5 a.u.
t
I 3 1015 W/cm2
t  b/ vp  0.3 fs
pr
He
Laser Assisted Electron Capture
ppf
ppi
Q
pp  pr
pr
pr  = Q |pp|
pr|| = Q / vp - vp/2 + pdrift (t0)
1013 W/cm2
Intensity
Parameter
Impact
Scattering
/ mrad
scatteringangle
angle
Q / mrad
0,4
0,3
0,2
0,1
0,0
10
20
30
40
50
60
70
Q-value / eV
Q-value
/ eV
Ion Longitudinal
Momentum
-03
-0.3
00
0.3
0.3
Ion Longitudinal Momentum
Laser Assisted Electron Capture
ppf
ppi
Q
pr
pr  = Q |pp|
pr|| = Q / vp - vp/2 + pdrift (t0)
0,4
T.Kirchner PRL 2002
1013 W/cm2
0,3
Intensity
Parameter
Impact
Probability
Scattering
/ mrad
scatteringangle
Q / mrad
angle
pp  pr
0,2
0,1
0,0
10
20
30
40
50
60
70
Q-value / eV
Q-value
/ eV
Ion Longitudinal
Momentum
Impact
Parameter
-03
-0.3
00
0.3
0.3
Ion Longitudinal Momentum
Laser Assisted Electron Capture
ppf
ppi
Q
pr
pr  = Q |pp|
pr|| = Q / vp - vp/2 + pdrift (t0)
0 ,4
T.Kirchner PRL 2002
1013 W/cm2
0 ,3
Intensity
Parameter
Impact
Probability
Scattering
/ dmrad
scatte rin gangle
ang Q
le / m ra
pp  pr
0 ,2
0 ,1
0 ,0
10
20
30
40
50
60
70
Q-value
/ eV
Ion Longitudinal
Impact
Parameter
Momentum
Q - v a lu e / e V
1500
1 ,3
-03
-0.3
00
0.3
0.3
Ion Longitudinal Momentum
Experiment
- The “Reaction-Microscope”
Atomic & Molecular Break-Up
- Intense femtosec Laser Pulses
- Ion induced femtosec fields
Future
- Studies with HCI : HITRAP
- Laser assisted collisions
- Sub-attosec ion induced fields
Sub-attosecond Ion Induced Fields
1 GeV/amu U92+ : =2, vp = 120 a.u.
+
He
b=2 a.u.
<Te>  40 as
I 1020 W/cm2
“Instantané” of the initial
two (many)-electron
wave function
+
e-
Bapat et al. JPB 2000
Ex. Double ionisation of He
by 100 MeV/amu C6+
t  b/ ( vp ) =0.2 as
He2+
Heisenberg’s
as microscope
Sub-attosecond Ion Induced Fields
Heisenberg’s
as microscope
Intense relativistic HCI beams at GSI
100 m
ESR
storage ring
1 ns, 1 MHz
Max-Planck Institut, Heidelberg
• R. Moshammer, H. Kollmus, D. Fischer, B. Feuerstein, C. Höhr,
• A. Dorn, C.D. Schröter, A. Rudenko, C. Dimopoulou,
• K. Zrost, V. Jesus, J. R. Crespo Lopez-Urrutia,
• A. Voitkiv, T. Kirchner, J. Ullrich
UMR, Rolla
GSI, Darmstadt
S. Hagmann, R. Mann
M. Schulz, R.E. Olson, D. Madison
Max-Born Institut, Berlin
H. Rottke, C. Trump,
E. Eremina, W. Sandner
Navrangpura, India
B. Bapat
E
Curve Crossing
Model
E
Curve
Crossing
Model
Electron
Capture:
Precision
Spectr.
N e 7+ + He
E
N e 6+(2s 4)
E
+
H e+
N e 6+(2p 3) + He +
N e 6+(2s 3) + H e +
r
Q-value / eV
Ne 7+ + He
Ne 6+ (2s4) + He+
Ne 6+ (2p 3 ) + He +
Ne 6+ (2s3) + He+
r
Q-value / eV
way in
way in
QC
way out
Qc = Q / 2E
Half coulomb
QC
angle
way out
Qc = Q / 2E
Half coulomb
angle
Recoil Ion Momentum Spectroscopy
Helmholtz coils:
electrons
B-field
drift
Electron
detector
recoil ions
E-field
projectile
beam
supersonic
gas-jet
Ion detector
Reaction Microscope
d
Ar2+
Y Axis
Ar++
Ar+
250
detector
a
200
Ar++
150
Ar+
1 cm
100
Ar2+
50
+Uo
+U
0
0
50
100
150
X Axis
200
250
Intense Laser: Single Ionisation
Drift momentum
2.
I
q
p y (t0 )  E0 (t0 ) cos(t0 )
Single Photons . . . . Intense
Laser

W/cm2
T=2/=2.7 fs
t
h = 80 eV: 1 photon
I
Ponderomotive
p y,max  2q U P U P 
2
h = 1.5 eV: >417
potential
 photons
4
0
-1
-2
4
Ne1+
2
2
1
 = 00
 = 450
 = 900
t0 = 0
t
t0 = 45
t = 90
-2 1 -1 002 1
-2
-1 -4 0-3


Pion ion
 Pmomentum
Helium
p/a.u.
electron
y [a.u.]
t
 = 00
py [a.u.]
Helium ion momentum /a.u.
 =30 2fs
1.
px
px
He1+
0t
 = 450
-2
0
-2
0
 = 90-4
 -3 -2 -1
2 P3 4 -4
P
ion
Moshammer et al. PRL 2000
Ey(t)
1015
Ey(t)
pulse
electron
0
1
[a.u.]
ppxy [a.u.]
2
3 4
-4
Rescattering: Dynamics
Ey(t)
I  1015W / cm 2
t
t0
y(t)
T   / c  2.7 fs
e1
Ne2+
e1
Ne1+
time delay
Ne2+
e2