Transcript Document
Fragmentation Dynamics of H2+ / D2+ in Intense Ultrashort Laser Pulses U. Thumm Kansas State University B. Feuerstein T. Niederhausen • Introduction • Method of Calculation • Results: initial vibrational state dependence intensity dependence pump-probe study of coherent vibrational motion INTRODUCTION Laser pulse (Ti:sapphire) H2+ (D2+) Time scales Tcycle = 2.7 fs Telectr = 0.01 fs Tpulse = 5 -150 fs Tv=0 = 14 (20) fs Energies Ip = 30 eV = 1.5 eV ( ˆ 20 ) De = 2.8 eV ( ˆ 2 ) Length scales l = 16000 a.u. (800 nm) R0 = 2 a.u. H0 + H+ dissociation 2 1 H2+ H2 4 3 H+ + H+ Coulomb explosion 1 single ionization 2 dissociation 3 enhanced ionization (CREI) 4 fast Coulomb explosion Dissociation and Ionization paths weak field 1.0 0 p+p 0.8 1 CE 2 0.6 strong field 0 E [a.u.] 3 0.4 Charge resonance enhanced ionization 0.2 H2+ u 1 0.0 1 g 2 2(3) 3 Dressed potential curves (schematic) -0.2 0 5 10 R [a.u.] 15 METHOD OF CALCULATION Laser field z p 2x1D model p eR Hˆ TˆR 1/ R Tˆz Vsce Vlaser Vlaser E(t ) cos(t ) z 2D Crank-Nicholson split-operator propagation ( z, R, t t ) e i TˆR t / 2 O( t 3 ) e i (Tˆz 1/ R Vsce Vlaser ) t e i TˆR t / 2 ( z, R, t ) Improved soft-core Coulomb potential Fixed softening parameter a = 1 ~) Vsce ( z 1 ~2 a z ~ z R/2 z (Kulander et al PRA 53 (1996) 2562) R-dep. softening function a(R) + fixed shape parameter b = 5 Vsce( ~ z) 1 ~ z 2 ( a( R ) b )2 1 a( R ) a( R ) b present result a(R) adjusted to (exact) 3D pot. curve Dipole oscillator strength for sg – su transitions Dipole(R) su ( z; R ) z sg ( z; R ) dz 5 Dipole [a.u.] 4 3 2 } Kulander et al PRA 53 (1996) 2562 1 This work (1D) 0 0 2 4 6 R [a.u.] 8 10 Array for 2x1D collinear non-BO wave packet propagation “virtual detector” method z: electron coordinate R: internuclear distance Grid: z = 0.2 a.u.; R = 0.05 a.u. “virtual detector”: data analysis (z, R, t ) A( z, R, t ) ei ( z,R,t ) j R ( z, R, t ) ( z, R, t ) v R , R A( z, R, t ) Dissociation (D ) pR ( z, t ) ( z, Rdet , t ) R Integration over z and binning fragment momentum distribution Coulomb explosion pR ( zdet , t ) ( zdet , R, t ) R (CE ) pR (R, t ) 2 pR ( zdet , R, t ) 2 R Integration over R and binning fragment momentum distribution 2 RESULTS Time evolution of wave function and norm (on numerical grid) Evolution of nuclear probability density (R,t ) dissociation probability ionization rate jz(R,t) CE probability Kinetic energy spectra of the fragments A) Single pulse (I = 0.05 – 0.5 PW/cm2, 25 fs): vibrational state and intensity dependence B) Pump-probe pulses (I = 0.3 PW/cm2, 25 fs): CE-imaging of dissociating wave packets C) Ultrashort pump-probe pulses (I = 1 PW/cm2, 5 fs): CE-imaging of bound and dissociating wave packets v=4 0.2 PW/cm2 25 fs PCE(t) Dissociation PD (t) Norm(t) Laser Coulomb explosion a - - - - - (Coulomb energy) 30 a b c 25 c d d b 20 total fragment energy [eV] 15 (R,t ) zdet 2(3) 2 ( z, R, t ) dz zdet 10 V 0 19 log scale Contours: jz(R,t) 5 1 V 5 0 0 0 20 40 60 80 100 120 140 160 180 200 19 2 4 6 8 10 Norm(t) v=0 0.2 PW/cm2 25 fs Dissociation Coulomb explosion Laser PD (t) PCE(t) (R,t ) zdet - - - - - (Coulomb energy) 2(3) 2 ( z, R, t ) dz zdet V 0 19 log scale 1 V 5 0 19 2 4 6 8 10 v=2 0.2 PW/cm2 25 fs PCE(t) PD (t) Norm(t) Dissociation Coulomb explosion Laser - - - - - (Coulomb energy) 30 25 20 15 (R,t ) zdet 2(3) 2 ( z, R, t ) dz zdet 10 V 0 19 log scale Contours: jz(R,t) 5 1 V 5 0 0 0 20 40 60 80 100 120 140 160 180 200 19 2 4 6 8 10 v=4 0.2 PW/cm2 25 fs PCE(t) Dissociation PD (t) Norm(t) Laser Coulomb explosion a - - - - - (Coulomb energy) 30 a b c 25 c d d b 20 15 (R,t ) zdet 2(3) 2 ( z, R, t ) dz zdet 10 V 0 19 log scale Contours: jz(R,t) 5 1 V 5 0 0 0 20 40 60 80 100 120 140 160 180 200 19 2 4 6 8 10 PCE(t) v=6 0.2 PW/cm2 25 fs Dissociation PD (t) Norm(t) Laser Coulomb explosion - - - - - (Coulomb energy) 30 25 20 15 (R,t ) zdet 2(3) 2 ( z, R, t ) dz zdet 10 V 0 19 log scale Contours: jz(R,t) 5 1 V 5 0 0 0 20 40 60 80 100 120 140 160 180 200 19 2 4 6 8 10 PCE(t) v=8 0.2 PW/cm2 25 fs Dissociation Laser PD (t) Norm(t) Coulomb explosion - - - - - (Coulomb energy) 30 25 20 15 (R,t ) zdet 2(3) 2 ( z, R, t ) dz zdet 10 V 0 19 log scale Contours: jz(R,t) 5 1 V 5 0 0 0 20 40 60 80 100 120 140 160 180 200 19 2 4 6 8 10 Branching ratio : Dissociation vs. Coulomb explosion RESULTS II A) Single pulse (I = 0.05 – 0.5 PW/cm2, 25 fs): vibrational state and intensity dependence B) Pump-probe pulses (I = 0.3 PW/cm2, 25 fs): CE-imaging of dissociating wave packets C) Ultrashort pump-probe pulses (I = 1 PW/cm2, 5 fs): CE-imaging of bound and dissociating wave packets Pump-probe experiment 2(3) 1 CE D2 target 0.1 PW/cm2 2 x 80 fs variable delay 0 - 300 fs Trump, Rottke and Sandner PRA 59 (1999) 2858 Pump-probe (D2+) v=0 0.3 PW/cm2 2 x 25 fs delay 30 fs Norm(t) PCE(t) Dissociation Laser Coulomb explosion PD (t) - - - - - (Coulomb only) b 30 (R,t ) zdet 2 ( z, R, t ) dz c zdet 25 log scale 20 Contours: jz(R,t) 15 10 c a 5 b 0 0 20 40 60 80 100 120 140 160 180 200 a Pump-probe (D2+) v=0 0.3 PW/cm2 2 x 25 fs delay 50 fs Norm(t) PCE(t) PD (t) Laser Dissociation Coulomb explosion - - - - - (Coulomb only) (R,t ) zdet b 2 ( z, R, t ) dz zdet log scale Contours: jz(R,t) c b a c a Pump-probe (D2+) v=0 0.3 PW/cm2 2 x 25 fs delay 70 fs Norm(t) PCE(t) Dissociation Laser PD (t) - - - - - (Coulomb only) b 30 (R,t ) zdet 2 ( z, R, t ) dz c zdet 25 log scale 20 Contours: jz(R,t) c 15 10 b a 5 0 0 20 40 Coulomb explosion 60 80 100 120 140 160 180 200 a RESULTS III A) Single pulse (I = 0.05 – 0.5 PW/cm2, 25 fs): vibrational state and intensity dependence B) Pump-probe pulses (I = 0.3 PW/cm2, 25 fs): CE-imaging of dissociating wave packets C) Ultrashort pump-probe pulses (I = 1 PW/cm2, 5 fs): CE-imaging of bound and dissociating wave packets Time evolution of a coherent superposition of states ( x, t ) ak e i k t k ( x) k Time dependent density matrix: km(t ) ak am e ikmt , km k m (t ) kk k 2 2 k Time average: 2 (T ) kk k 2 k km(t ) k m k m km k m k m e ikmT 1 ikmT 0 (kmT 1) Incoherent mixture H2+ (km-1 = 3 … 30 fs): produced by: Ion source: T s incoherent ensemble Ultrashort laser pulse: T 5 fs coherence effects expected autocorrelation D2 D2+ t pump 1 PW/cm2 5 fs D0 + D+ D+ + D+ probe 2 PW/cm2 5 fs Coulomb explosion imaging of nuclear wave packets Fragment yield Y at Ekin : Y(Ekin) dEkin = |(R)|2 dR 1/R Probe Y(Ekin) = R 2 |(R)|2 Kinetic energy Ekin (R) d+d |(R,t)|2 D2+ Pump D2 initial |(R)|2 R |(R)|2 reconstruction from CE fragment kin. energy spectra 3.0 t = 10 fs |(R)|2 2.5 2.0 reconstructed |(R)|2 1.5 original |(R)|2 1.0 incoherent FC distr. 0.5 0.0 0 1 2 4 3 R / a.u. moving wave packet 5 6 7 |(R)|2 reconstruction from CE fragment kin. energy spectra 3.0 t = 20 fs |(R)|2 2.5 2.0 reconstructed |(R)|2 1.5 original |(R)|2 1.0 incoherent FC distr. 0.5 0.0 0 1 2 3 4 R / a.u. turning point 5 6 7 |(R)|2 reconstruction from CE fragment kin. energy spectra 3.0 t = 40 fs |(R)|2 2.5 2.0 reconstructed |(R)|2 1.5 original |(R)|2 1.0 incoherent FC distr. 0.5 0.0 0 1 2 3 4 R / a.u. 5 6 7 |(R)|2 reconstruction from CE fragment kin. energy spectra 3.0 t = 580 fs |(R)|2 2.5 2.0 reconstructed |(R)|2 1.5 original |(R)|2 1.0 incoherent FC distr. 0.5 0.0 0 1 2 3 4 R / a.u. 5 6 7 ‘revival’