Integrating a random utility random opportunity labour supply model in MIDAS Belgium: presentation of on-going work
Download ReportTranscript Integrating a random utility random opportunity labour supply model in MIDAS Belgium: presentation of on-going work
Integrating a random utility random opportunity labour supply model in MIDAS Belgium: presentation of on-going work Gijs Dekkers, Federal Planning Bureau CESO, KU Leuven CEPS/INSTEAD André Decoster CES, KU Leuven Bart Capéau CES, KU Leuven Federaal Planbureau Economische analyses en vooruitzichten European Meeting Of The INTERNATIONAL MICROSIMULATION ASSOCIATION, October 23-24th, 2014, MAASTRICHT Integrating a random utility random opportunity labour supply model in MIDAS Belgium – – – – – Current versions of MIDAS include simple, reduced-form behavioural equations Not ideal for reform analysis complicating factor: MIDAS is dynamic Another complicating factor: alignment This presentation reports on on-going work to introduce the “random utility– random opportunity model” (a.k.a. RURO) in the dynamic-ageing microsimulation model MIDAS of Belgium. – Brief overview of this presentation • A birds-eye view on RURO • Simulation in LIAM2: a simple example of code • Oh, static is static, and dynamic is dynamic, and never the twain shall meet. Wage thrift Stability Alignment • Some preliminary results Federaal Planbureau Economische analyses en vooruitzichten RuRo-model Oslo model standard model – choice of discrete h choice of j: (h,w,k) – h: uniform distr. h: non uniform – gross wage given gross wage distrib. – tax-benefit system tax-benefit system – functional form U(.) functional form U(.) – assumptions about stochastic part assumptions about stochastic part – => prob (h) => prob (h,w) Federaal Planbureau Economische analyses en vooruitzichten RuRo-model • probability: • standard multinomial logit-model (relative attractiviness of the choice) • RuRo • weighted by measure of ‘availability’ Federaal Planbureau Economische analyses en vooruitzichten RuRo-model • Structural => empirical specifications – preferences – opportunities (job availability) Federaal Planbureau Economische analyses en vooruitzichten RuRo-model • preferences: Box-Cox Federaal Planbureau Economische analyses en vooruitzichten RuRo-model • job availability – market versus non-market – market subset Federaal Planbureau Economische analyses en vooruitzichten RuRo-model • coefficients for utility function • coefficients for opportunities – market versus non market (q0) – hours (peaks): g2(h) – wage distribution: g1(w) Federaal Planbureau Economische analyses en vooruitzichten RuRo-model Some quite very extremely preliminary estimation results Leisure coefficients M/F in couples exponent constant ln(age) ln(age)^2 # children between 0 and 3 # children between 4 and 6 # children between 7 and 9 region WAL region BXL Educ LOW Educ HIGH Leisure coefficients single M/F exponent constant ln(age) ln(age)^2 # children between 0 and 3 # children between 4 and 6 # children between 7 and 9 region WAL region BXL Educ LOW Educ HIGH Wage equation M/F Sigma (RMSE) constant potential experience potential experience^2 Educ LOW Educ HIGH Federaal Planbureau males Coeff SE t-value females Coeff SE t-value -7.178 35.345 -19.054 2.686 -0.059 0.047 -0.100 0.255 0.207 -0.294 -0.055 0.543 11.778 6.464 0.898 0.084 0.089 0.088 0.104 0.163 0.128 0.093 -13.23 3.00 -2.95 2.99 -0.70 0.52 -1.13 2.45 1.27 -2.30 -0.59 -1.845 205.964 -115.314 17.345 1.232 1.646 1.219 2.131 0.545 2.334 -3.085 0.451 51.100 28.543 4.030 0.516 0.546 0.552 0.708 1.019 1.184 0.708 -4.09 4.03 -4.04 4.30 2.39 3.02 2.21 3.01 0.53 1.97 -4.36 -3.118 70.790 -38.329 5.610 0.000 -1.001 -2.742 2.509 0.765 -0.692 -0.881 0.705 43.123 23.933 3.334 0.000 2.263 1.318 0.774 0.740 0.736 0.645 -4.42 1.64 -1.60 1.68 0.00 -0.44 -2.08 3.24 1.03 -0.94 -1.37 -1.113 323.745 -177.290 25.346 3.706 0.914 -1.377 2.853 -2.365 1.811 -2.682 0.611 78.769 43.301 6.014 1.609 1.184 1.055 1.047 1.127 1.430 1.046 -1.82 4.11 -4.09 4.21 2.30 0.77 -1.30 2.72 -2.10 1.27 -2.56 0.253 2.037 2.420 -3.666 -0.146 0.242 0.004 0.027 0.225 0.500 0.017 0.014 63.73 76.25 10.77 -7.33 -8.36 17.38 0.256 2.010 2.275 -3.449 -0.097 0.280 0.004 0.026 0.228 0.565 0.022 0.015 59.47 77.29 9.98 -6.10 -4.32 18.35 Economische analyses en vooruitzichten RURO in MIDAS BE: A simple example of LIAM2 code ad_earnings: args: gender, age code: [...] return: [...] Function: generate earnings ad_welfare: args: income code: [...] return: [...] Function: generate welfare benefit ad_unemployment: args: entitlement conditions code: [...] return: [...] Function: generate unemployment benefit utility_optimisation: - i: 1 - max_u: 0 - utility_rndm: normal(0.0, 1.0) * 100 - while: cond: (i < 200) code: - joboffer: [make a MC simulation] - hours: if(joboffer, [make a random draw of discrete hours], 0) - hourly_wage: if(joboffer, ad_earnings(gender, age), 0) - incomeW: if(joboffer, hourly_wage * hours, ad_unemployment(...)) - welfare: ad_welfare(incomeW) the individual gets a job offer? 200Does iterations Draw a number of hours (or not) - leisure: 1 - hours / (168 * 52) - utility: function of (incomeW + welfare, leisure, utility_rndm) - max_u: max(max_u, utility) - opt_hours: if(i == 0, hours, if(max_u == utility, hours, opt_hours)) - i: i + 1 Federaal Planbureau utility Optimal choice after i iterations Take max(utility) Economische analyses en vooruitzichten RURO in MIDAS BE: MIDAS is dynamic • • Wages increase with productivity Social and fiscal parameters increase, but at a lower rate in the short and middle run • This will cause the RURO model to keel over as simulated time goes by Federaal Planbureau Economische analyses en vooruitzichten Complicating factor: MIDAS is dynamic Starting dataset ± 2.2K2 individuals in 2002 Simulate job-offers i, t Draw hours i LABOUR MARKET MODULE t i= 1 to 200 MIDAS t=2002 to 2060 DEMOGRAPHIC MODULE t Simulate earnings i, t=A* RURO Simulate alternative incomes i, t=A Derive net income i, t=A PENSION & BENEFITS MODULE t Derive utility i, t=A* Select hours where U(i)=Max, t CONTRIBUTIONS AND TAXATION MODULE t REDISTRIBUTION, POVERTY, INEQUALITY OTHER OUTPUT Federaal Planbureau A = year of estimation – currently 2007 * Stochastic components are constant over t (exception is ‘joboffer’ and only the random component of earnings changes with labour market transitions). Economische analyses en vooruitzichten Complicating factor: alignment • It is of course sad, but MIDAS is being used in a policy-assessment environment. • Therefore, we use alignment by sorting to be able to assess policy measures in conjunction with a semi-aggregate model (see Dekkers, Inagaki and Desmet, 2012) • Alignment includes: – – – – – – • • Who works and who does not Unemployment Early retirement/CELS Private and public sector employment … And all this to age, gender and period Hence, heterogeneity in choice sets needs to be included in an alignment procedure in simulation. Who receives a job-offer at period t? – ‘risk’ based on individual characteristics, using estimation results of RURO – Aligned to gender, age and period Federaal Planbureau Economische analyses en vooruitzichten Complicating factor: alignment Foreach t = 2002 to 2060 MC simulation of inversion at i Foreach i = 1 to 200 Logit simulation of ‘risk’ joboffer J(i) at i, given working(t – 1) If inversion at i Joboffer(i)=inverse(joboffer(i-1)) Joboffer(i) = ALIGNMENT(age, gender, t) If Joboffer(i) simulation of hours h Unemployment benefit if eligible at t simulation of earnings at A MAX=max(MAX, utility(i) Federaal Planbureau Apply means-test for welfare at A Add family benefits Derive net total income at A Derive utitlity(i) Economische analyses en vooruitzichten Some extremely preliminary simulation results 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 joboffer MALE Federaal Planbureau joboffer FEMALE MALE FEMALE Economische analyses en vooruitzichten Some extremely preliminary simulation results 0.7 0.65 0.6 0.55 0.5 0.45 0.74 0.4 0.72 variant FEMALE basis FEMALE 0.7 0.68 0.66 0.64 0.62 0.6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 variant 90% MALE Federaal Planbureau basisvariant MALE Economische analyses en vooruitzichten Some extremely preliminary simulation results optimal hours 45 40 35 30 25 20 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 base variant MALE base variant FEMALE variant MALE variant FEMALE optimal hours 38 36 34 32 30 28 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 base variant BRUSS base variant FLAND base variant WALL Federaal Planbureau Economische analyses en vooruitzichten Some extremely preliminary simulation results optimal hours men 42.5 42 41.5 41 40.5 40 39.5 39 38.5 38 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 base variant edu LOW M base variant edu M M optimal hours women base variant edu H M 40 35 30 25 20 15 10 5 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 base variant edu L F base variant edu M F base variant edu H F Federaal Planbureau Economische analyses en vooruitzichten Integrating a random utility random opportunity labour supply model in MIDAS Belgium Thank you Federaal Planbureau Economische analyses en vooruitzichten Assumptions and hypotheses of the Study Committee on Ageing Key demographic hypotheses 2007 2030 2050 2060 Fertility 1.81 1.76 1.76 1.77 Men 77.3 81.2 84.0 85.3 women 83.3 87.0 89.7 90.9 Life expectancy at birth Key macro hypotheses Up to 2011 2011-2014 ≥ 2015 Yearly productivity 0.01% 1.28% 1.50% 14.75 in 2014 Decreasing towards 8% Unemployment rate Social policy hypotheses 2009-2010 ≥ 2015 Wage ceiling Current legislation 1.25% Minimum right per working year 1.25% Welfare adjustment non-lump-sum benefits Employed and self-employed 0.50% Welfare adjustment of lump-sum benefits 1.00% Federaal Planbureau Economische analyses en vooruitzichten