물실2오리엔테이션

Download Report

Transcript 물실2오리엔테이션

물리실험II 오리엔테이션
•
•
•
•
FRESNEL EQUATIONS, BREWSTER'S LAW
FARADAY EFFECT
MUON DECAY
MEASUREMENT OF LOW RESISTANCES :
4 PROBE METHOD,
LOCK- IN AMPLIFIER
FRESNEL EQUATIONS, BREWSTER'S
LAW
𝑛1 cos 𝜃𝑖 − 𝑛2 cos 𝜃𝑡
𝑅𝑠 =
𝑛1 cos 𝜃𝑖 + 𝑛2 cos 𝜃𝑡
2
𝑛1 cos 𝜃𝑡 − 𝑛2 cos 𝜃𝑖
𝑅𝑃 =
𝑛1 cos 𝜃𝑡 + 𝑛2 cos 𝜃𝑖
2
FRESNEL EQUATIONS, BREWSTER'S
LAW
He-Ne Laser
Polarizer
Half-cylindrical Lens
Photometer
FARADAY EFFECT
Linear polarization=
Right hand circular polarization +
Left hand circular polarization
Verdet constant,
FARADAY EFFECT
Flint glass
(SF6)
Analyzer
5 color tunable He-Ne laser system
Polarizer
Teslameter
MUON DECAY
Muon(𝝁): an elementary particle similar to the electron.
Charge -1, spin ½, about 200 times the mass of electron’s
Mean lifetime = 2.197 × 10-6S
Non-Relativistic
Relativistic
MUON DECAY
𝑑𝑁 = −𝑁 𝑡 𝑑𝑡/𝜏
𝑁 𝑡 = 𝑁0 exp(−𝑡/𝜏)
𝑁=
𝑁0 exp(−𝑡/𝜏) + 𝐶 (background count)
mesured
MEASUREMENT OF LOW RESISTANCES :
4 PROBE METHOD,
LOCK- IN AMPLIFIER
4 probe method
MEASUREMENT OF LOW RESISTANCES :
4 PROBE METHOD,
LOCK- IN AMPLIFIER
Signal is multiplied
by the gain of Amplifier (g)
Signal in
:
Reference :
High frequency(2f)
signals can not pass
through Low-pass filter
MEASUREMENT OF LOW RESISTANCES :
4 PROBE METHOD,
LOCK- IN AMPLIFIER
Dual lock in amplifier
∝ Voltage(amplitude)
on Reactance
Signal in
Reference signal
∝ Voltage(amplitude)
on Resistance
MEASUREMENT OF LOW RESISTANCES :
4 PROBE METHOD,
LOCK- IN AMPLIFIER
CONTENTS




Holography
Energy gap of Ge
Hall effect
SQUID
Holography
Objective
 Two-beam transmission hologram을 제
작하는 과정을 통해 holography의 기본
적인 원리를 이해한다.
Holography
Holography?
http://en.wikipedia.org/wiki/Holography
Coherent한 두 빛을 어떤 면에서 만나게 하면 두 빛의
위상차에 따른 간섭무늬가 만들어진다.
Holography
Setup
He-Ne laser
PFG-01 film
Energy Gap of Ge
Objective
 온도에 따른 undoped Ge의 conductivity
σ를 측정하고, 이를 통해 undoped Ge의
band gap Eg를 구한다.
Energy Gap of Ge
Small band gap of Ge
작은 band gap
http://en.wikipedia.org/wiki/Electron_band_structure
약간의 thermal energy를 공급하는 것으로도 전자가
band gap을 극복하여 sample의 conductivity가 변한다.
Energy Gap of Ge
Evaluation (1/2)
  eni (  n   p )
j  (e)ni vn  epi v p
j  E (Ohm' s law)
μn, μp: mobility of electron and
hole
ni, pi: electron, hole concentration
vn, vp: electron, hole drift velocity
e: elementary charge
[2] http://en.wikipedia.org/wiki/Electron_mobility
 (e)ni vn  eni v p
Intrinsic semiconductor인 pure Ge는
thermal equilibrium 상태에서 valence
band hole과 conduction band electron
수가 동일.
vn    n E
vp   pE
Definition of
drift velocity[2].
Energy Gap of Ge
Evaluation (2/2)
  eni (  n   p )
k: Boltzmann constant
σ0: constant coefficient
Eg: band gap of pure Ge at 0 K
  4.77 10 4 eV / K (Ge),
  235 K (Ge) [6].
ni  T 3/ 2  exp( Eg' / 2kT ), [3,4].
  T 3 / 2 , [2].
2

T
Eg'  Eg 
, [5].
T 
2
 1 

T
 E g 
   0 exp  
T 
 2kT 

 


따라서 각 온도
에 따른 σ를 측
정하면 curve
fitting을 통해 Eg
를 구할 수 있다.
[2] http://en.wikipedia.org/wiki/Electron_mobility
[3] Zeynep Dilli (2008-2009), Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations
[4] http://ecee.colorado.edu/~bart/book/book/chapter2 /ch2_6.htm
[5] http://en.wikipedia.org/wiki/Band_gap
[6] Jerome Keith Miller, "PROBING III-V SEMICONDUCTOR HETEROSTRUCTURES USINGTIME RESOLVED PUMP-PROBE TECHNIQUES", Ph. D. Dissertation, Vanderbilt Universit
y, Nashville, Tennessee, 2006.
Energy Gap of Ge
Setup
Hall effect module
Power supply
Multimeter for power voltage
Energy Gap of Ge
Hall effect module
On: sample에 걸리는 전류 측정
Off: sample 온도 측정
Display
Ge sample
Module 전원 공급 단자(교류)
전류 조정 knob
Ge sample heating On/Off
power voltage 측정을 위한 multimeter 연결
Hall effect module 전, 후면
Hall effect in n-Ge, p-Ge
Objective
 특정 온도에서 n-type Ge와 p-type Ge의
Hall coefficient를 측정한다. 이후 온도를
바꾸면서 Hall coefficient의 변화를 관찰
한다.
 Hall mobility와 electron concentration을
측정한다.
Hall effect in n-Ge, p-Ge
Hall effect
Hall effect는 uniform magnetic field B에 놓여 있는
전도체에 current I가 흐르면, Lorentz force에 의해
charge carrier가 B와 I에 수직으로 힘을 받아 한쪽으
로 몰리는 현상이다.
IB
VH  R H
d
Hall coefficient
Hall effect in n-Ge, p-Ge
Doping type
N-type
P-type
Hall effect in n-Ge, p-Ge
Hall coefficient RH in semiconductor is expressed as following
1 p h2  ne2
RH  
e ( p h  ne ) 2
μ denotes the mobility
Hall coefficient RH can be rearranged to be
n-type
*conditionn  nd  ni ;
p  pi  ni .
p-type
*conditionn  ni  pi ;
p  pa  pi .
 n2
 1 

T 2   nd
2 3

d
  g 
  
nd 
 N 0 T  exp  
 4
k
T
T



 2
b

1

RH   
e 
2
 n2

 d  N 2T 3  exp   1    T    nd
n

 d 
0
 k T  g T    2
4

 b 


 p2
 1 
T 2  
a
  g 
  
pa  
 N 02T 3  exp  
 4
k
T
T



 b 
1

RH  
e 
 p2
 1 
T 2  

2 3

a


p


N
T

exp



 a 
0
 k T  g T     
4

 b 


[3] http://en.wikipedia.org/wiki/Hall_effect
[4] Kasap, Safa. "Hall Effect in Semiconductors"

1  1 
 u 2 

2


1  1 
 u 


pa 
1 u2

2

2


pa 


1  u 
2 




u  e /  h
RH turns out to be the function of temperature!
Hall effect in n-Ge, p-Ge
Setup
IB
VH  R H
d
Teslameter
Power supply
Multimeter for VH, VI Two solenoids Hall effect module
Hall effect in n-Ge, p-Ge
Hall effect module
Hall voltage 측정을 위한 multimeter 연결
On: sample에 걸리는 전류 측정
Off: sample 온도 측정
Display
Ge sample
Ge sample heating On/Off
Module 전원 공급 단자(교류)
전류 조정 knob
회로 voltage 측정을 위한 multimeter 연결
Hall effect module 전, 후면
SQUID
Objective
 Superconducting quantum interference
device (SQUID)를 사용한 실험을 통해
Josephson junction의 특성과 magnetic
flux quantization의 존재를 확인한다.
SQUID
Josephson junction
Superconductor
Single Josephson junction
I-V curve in Josephson junction
http://en.wikipedia.org/wiki/Josephson_junction
SQUID
Magnetic flux quantization in SC ring
h
0 
2e
SQUID
SQUID
SQUID
Result
SQUID
Setup
Control box
SQUID probe and N dewar