Transcript 2XPS_김정원
광전자 분광법 Photoelectron Spectroscopy (XPS, UPS) 김정원 (E-mail: [email protected]) 미래융합기술본부 소재게놈측정센터 1 표면분석I 2016 Introduction - 광전자분광법(PES)란 무엇인가 ? - PES로 무엇을 할 수 있는가 ? - PES의 간략한 역사 - Principles of XPS Chemical shifts 표면분석I 2016 김정원 Photoelectron Emission energy, polarization, angle Vacuum UV x-ray Low energy electrons UPS energy, angle, spin valence core XPS High energy electrons XPS: X-ray Photoelectron Spectroscopy (hv = 50~2000 eV) UPS: Ultraviolet Photoelectron Spectroscopy (hv = 6~80 eV) 표면분석I 2016 김정원 Schematic Diagram of PES Process Electronic structure Solid UPS XPS Atomic composition Chemical structure Energy conservation EB: element & chemistry specific in case of core levels 표면분석I 2016 김정원 Typical XPS spectra of Ag 3d5/2 MNV 150 Al Kα Mg Kα MNV kCounts [a.u.] 3d3/2 100 3p3/1 3p3/2 3s 50 4s 4p 4d (valence) 1200 1000 800 600 Binding Energy [eV] 400 200 0 EB: constant irrespective of excitation source AES transition: varies with excitation energy (constant kinetic energy) 표면분석I 2016 김정원 약어들 Abbreviations XPS: X-ray Photoelectron Spectroscopy ESCA(XPS): Electron Spectroscopy for Chemical Analysis UPS: Ultraviolet Photoelectron Spectroscopy PES: Photoelectron (Photoemission) Spectroscopy KE: Kinetic energy BE (EB): Binding energy ARXPS, UPS, PES: Angle-Resolved XPS, UPS, PES XPD: X-ray Photoelectron Diffraction PED: Photoelectron Diffraction IP(E)S: Inverse Photoemission Spectroscopy EELS: Electron Energy Loss Spectroscopy Electron Spectroscopy: AES, EELS, PES 표면분석I 2016 김정원 PES로 무엇을 할 수 있는가 ? -Non-destructive Elemental Identification except H and He (다른 방법? X-ray fluorescence, SIMS, AES) - Quantification (원소농도분석): ~ %정확도 - Chemical State Identification (e.g. Si, SiO2) - Surface/Adsorbate Structure - Electronic Structure valence band level positions band structure mapping work function many body effect, etc. - Microscopy with Chemical Sensitivity 표면분석I 2016 김정원 Available? Where? XPS (ESCA): 서울? 대부분의 종합대 및 공대, 일부 실험실 (not open), KIST, 생기연 지방? 대부분의 국립 종합대, 일부 종합 사립대 기초과학지원연구원 (대전, 부산), 화학연 대부분의 대기업 분석실 (not open), 포항방사광 UPS (Ultraviolet Photoelectron Spectroscopy): 기초과학지원연구원 (대전, 부산), KAIST, KIST 많은 개별 실험실 (not open) vs. Evans Analytical Group (USA), Toray Research Center (Japan) Pros: cheap and relatively fast Cons: instrument-dependent, weak analysis 표면분석I 2016 김정원 8 A Brief History of PES - 1887, H. Hertz: 광전효과(photoelectric effect) 발견 - 1899, J. J. Thompson: 전자 발견 - 1900, M. Planck: Quantum theory (quantized energy) - 1905, A. Einstein: Quantum theory로 광전효과 설명 - 1958, W. E. Spicer: UPS spectra와 DOS 관련주장 - 1967, K. Siegbahn: XPS (ESCA) 확립 - 1969, HP - Commercial XPS - 1970s: Synchrotron Radiation 표면분석I 2016 김정원 History: Discovery of Electrons Photoelectric effect Metal plate in a vacuum, irradiated by ultraviolet light, emits charged particles (Hertz 1887), which were subsequently shown to be electrons by J.J. Thomson (1899). Classical expectations Light, frequency ν Vacuum Electric field E of light exerts force chamber F=-eE on electrons. As intensity of Collecting Metal light increases, force increases, so KE plate plate of ejected electrons should increase. Electrons should be emitted whatever the frequency ν of the light, so long as E is sufficiently large I Ammeter Potentiostat Lecture note: Fisher (Univ. College London ) 표면분석I 2016 김정원 For very low intensities, expect a time lag between light exposure and emission, while electrons absorb enough energy to escape from material History: Photons and Electrons Photoelectric effect Einstein Actual results: Maximum KE of ejected electrons is independent of intensity, but dependent on ν For ν<ν0 (i.e. for frequencies below a cut-off frequency) no electrons are emitted Einstein’s interpretation (1905): light is emitted and absorbed in packets (quanta) of energy E h (1.1) Millikan An electron absorbs a single quantum in order to leave the material There is no time lag. However, rate of ejection of electrons depends on light intensity. The maximum KE of an emitted electron is then predicted to be: K max h W (1.2) Planck constant: universal constant of nature h 6.63 1034 Js 표면분석I 2016 김정원 Work function: minimum energy needed for electron to escape from metal (depends on material, but usually 2-5eV) Verified in detail through subsequent experiments by Millikan 광과 시료원자와의 상호작용 표면탈출: XPS 이차전자 증폭 발생: SEM 탄성 충돌: XRD, LEED, RHEED 비탄성 충돌: EELS X-선, UV (EDX/WDX) XES 표면분석I 2016 김정원 Theory of Photoemission (binding energy) frozen orbital approximation (Koopman’s theorem) + e (KE) initial state A(N) final state A+(N-1) A( N ) A ( N 1) e Considering energy conservation Ei ( N ) E f ( N 1) KE BE KE E f ( N 1) Ei ( N ) kHF relax correl rel kth orbital energy by Hatree-Fock calculation first approximation correlation energy Relaxation energy 표면분석I 2016 김정원 relativistic energy Element-specific Core Levels 표면분석I 2016 김정원 Chemical Shifts (Initial state effect?) valence shell (charge qi) core shell electrons rij Surroundings (charge qj) Charge potential model in ionic bonds All core levels undergo same chemical shift (approximation) similar to Madelung potential EB ↑ as q ↑ (note sign) (Fig. 3.3) for neutral atom Coulomb interaction between core electron and nucleus screened by valence electron charge Dependent on chemical environment such as oxidation state electronegativity of neighboring atoms number of surrounding atoms J.C. Vickerman and I.S. Gilmore, Surface Analysis, The principal Techniques, 2nd ed. (Wiley, 2008) 표면분석I 2016 김정원 Chemical Shifts of S 1s and S 2p Formal oxidation state is good indication of EB It is only valid in ionic bonds If there is covalent/ionic bond character mixing, Charge density on an atom is the best criterion 표면분석I 2016 김정원 A Example of Chemical Shifts Not Always Possible Tabulated Values Vary Widely 표면분석I 2016 김정원 Final state consideration eEi hot electron e- electron ejection Δt hole valence shell initial state Instant excitation hole Ef final state Relaxation (dynamic screening, solvation…) Ei(N) + = Ef(N-1) + KE (e-) BE = - KE (e-) = Ef(N-1) – Ei(N) ≈ orbital energy But, final-state relaxation is much dependent on its atomic environment Relaxation energy –> binding energy (time-dependent) Relaxation time –> peak width 표면분석I 2016 김정원 Spin-orbit splitting J=L+S Unpaired electron after ionization 3d5/2 Ag 3d J=L-S 3d3/2 Ag 3d: (3d)10 + → (3d)9 + eL=2, S=1/2, J=L+S,,, L−S = 5/2, 3/2 2D , g = 2×(5/2)+1 = 6 5/2 J 2D , g = 2×(3/2)+1 = 4 3/2 J Branching ratio = 6:4 = 3:2 380 378 376 374 372 370 368 Binding energy [eV] p, d, f core levels split into two doublet peaks BE (J=L−S) > BE (J=L+S) considering final state energy Splitting ↑ as Z ↑ What about p and f levels? 표면분석I 2016 김정원 366 364 Final State Effects Initial state effect: Koopman’s theorem Final state effect: : 1~10 eV -the created core hole after photoionization affects the energy distribution of the emitted electrons in different ways. Relaxation effect Multiplet splitting Multielectron excitations -shake up and shake off satellites -electron-hole excitation (continuous satellite): asymmetric line shape Plasmon loss peaks Vibrational effects Ref. Electron spectroscopy, theory, techniques, and applications Vol.2 (Academic Press. 1978) Chap. 1, C.S. Fadley, Basic concepts of x-ray photoelectron spectroscopy 표면분석I 2016 김정원 Relaxation effect Atomic relaxation (gas phase) by Franck-Condon principle BE E f ( N 1) Ei ( N ) As Ef ↓ , BE ↓ Instantaneous electronic transition (A) but relaxation afterward (F) 표면분석I 2016 김정원 Extra-atomic relaxation by surroundings (sold phase) Typical shake-up in C 1s 표면분석I 2016 김정원 Instrumentation - Vacuum System - Photon Source - Electron Energy Analyzer - Resolution - Binding Energy Referencing - Charging compenstation 표면분석I 2016 김정원 Universal Curve Inelastic electron mean free path (IMFP) ~ Intensity attenuation length I ( x) I 0 e x ( E ) nm 표면분석I 2016 김정원 IMFP Other consideration (Escape Other consideration (Escapedepth) depth) Comparison of AES and EDX analysis volume Hard X-ray PES (HAXPES) HAXPES Conventional VUV SX-PES Probing depth (3λ) up to > 10 nm Accessing bulk or buried interface Depth profile of thin film Lecture note: R. Claessen (Univ. Wϋrzburg) 표면분석I 2016 김정원 Photon Source Intensity, Focus, Monochromatic, energy selection dual anode, monochromatic, discharge lamp, SR 표면분석I 2016 김정원 Characteristic X-ray Lines Line Y Mζ Zr Mζ Cr Lα Cu Lα Mg Kα Energy (eV) 132.3 151.4 572.8 929.7 1253.6 Width (eV) 0.47 0.77 3.0 3.8 0.7 Al Kα Si Kα Cu Kα 1486.6 1739.5 8048.0 0.85 1.0 2.6 Line Separation (eV) Relative Intensity 표면분석I 2016 김정원 Satellites of Mg Kα α12 α3 α4 α5 α6 β 0.0 100 8.4 8.0 10.2 4.1 17.5 0.55 20 0.45 48.5 0.5 Al K Monochromatic X-ray Source의 구조 PHI Quantera 표면분석I 2016 김정원 C 1s: Effect of monochromatization 10 ~ 40 times intensity reduction Focusing at the sample (up to 10 ㎛ recently) - Intense beam - Imaging 표면분석I 2016 김정원 Resonance Lines of Rare Gas Discharge UV sources : each monochromator available Resonance Line He I He II Ne I Ar I Kr I Xe I 표면분석I 2016 김정원 Energy (eV) 21.2175 23.0865 40.8136 16.6704 Intensity (%) 100 2 16.8474 11.6233 11.8278 10.0321 100 100 50 10.6434 8.4363 9.5695 15 Synchrotron Radiation - High Intensity and resolution, energy tunability, focused Beam, polarization, pulsed beam - Big Facility means Big Money ! – Shared facility Pohang Acceleration Lab. 표면분석I 2016 김정원 Hemispherical Energy Analyzer Concentric Hemispherical Analyzer : CHA 표면분석I 2016 김정원 Electron Detection Channeltron (CEM) 표면분석I 2016 김정원 Microchannel Plate (MCP) Position-sensitive Energy Analyzer Channeltron array 표면분석I 2016 김정원 MCP + CCD (or DLD) Energy Resolution of Analyzer Small Epass Large Eretard High resolution Low throughput (low count rates) 표면분석I 2016 김정원 Large Epass Small Eretard Low resolution High throughput (high count rates) Total Energy Resolution ΔETotal = √(ΔEanal.2 + ΔEphoton2 + ΔEthermal broad2 + ΔEinhomogen.2 + ..) ΔEanal.= Epass(d/2Ro + α2/4) for HEA type d= slit width Ro=mean radius α=a half acceptance angle ΔEthermal broad ~ 3/2kT <Practical measurement of total resolution> 표면분석I 2016 김정원 Differential surface charging Peak Broadening or shift 표면분석I 2016 김정원 Charging Compensation 표면분석I 2016 김정원 Charging Compensation With a Magnetic lens system (Cratos) Nearly complete charging compensation ! 표면분석I 2016 김정원 Modern ESCA Features 1. 2. 3. 4. 5. Monochromatic x-ray (1486 eV) Angle-resolved analyzer UV discharge lamp (optional) Automatic sample transfer Charge compensation 가격 $1M? 표면분석I 2016 김정원 Data Processing - Smoothing - Background and X-ray Satellite 제거 - Peak Fitting and Deconvolution - Practical Programs 표면분석I 2016 김정원 Smoothening - NOT recommended, but - 너무 오래 걸리거나, 변하는 시료, 또는 미분하기 전에 - Savitsky-Golay method - Adjacent Averaging 표면분석I 2016 김정원 Background Removal Background – – – – – – Inelastic Energy Loss Mechanism Complicated Process Sample Dependent Geometry Dependent Instrument Dependent Must be Removed for Quantification Removal Methods – Linear, Shirley, Tougaard 표면분석I 2016 김정원 Linear Background Removal 표면분석I 2016 김정원 Shirley Method integrated background Key point: 어떤 점 x에서 BG 는 x 보다 높은 K. E.를 가진 전자들의 total intensity에 비례한다 표면분석I 2016 김정원 Shirley BG Removal in Action 표면분석I 2016 김정원 Peak Fitting and Deconvolution Lorentzian Gaussian Voigt L( x) 2A 4( x xc ) 2 2 ( x xc ) 2 G ( x) exp 2 2 2 A V ( x) A 2 ln 2 L 3 2 t 2 e 2 G ln 2 L G 2 4 ln 2 x xc t G Lorentzian width: core hole life time: ΔE·τp≥ ħ Gaussian width: instrumental resolution, system inhomogeneity 표면분석I 2016 김정원 2 1 dt Least Square Peak Fitting 표면분석I 2016 김정원 Peak Fitting in action J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES (Wiley, 2003) C 1s urea formaldehyde/epoxy coating Any principles? 1) 2) 3) 4) 5) 표면분석I 2016 김정원 Proper background subtraction should be made. Initial guess is important. Any peak should have physical meaning. Fitting is just fitting (no result from nothing) Peak splitting within an system resolution Fitting Programs CasaXPS http://www.casaxps.com/ Unifit http://www.uni-leipzig.de/~unifit/ NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA) http://www.nist.gov/srd/nist100.htm Non-commercial programs Fitt-win http://escalab.snu.ac.kr/ XPSPEAK 4.1 http://www.uksaf.org/software.html FitXPS Compro http://www.sasj.jp/COMPRO/index.html 표면분석I 2016 김정원 Applications - Elemental Identification - Quantitative Analysis - Chemical Shifts - Work function Measurement - Angle-resolved Techniques - Depth profile - Microscopy 표면분석I 2016 김정원 Elemental Identification 표면분석I 2016 김정원 정량분석: Basic Concept XA IA IA I A I A Ii Ii i I XA IA 시료 중 원소 A의 농도 I A 완전히 원소 A로만 이루어진 시료에서 측정된 원소 A의 XPS 피크 세기 (Atom Sensitivity Factor) 시료에서 측정된 원소 A의 XPS 피크 세기 값은 알기 어려우나, A 표면분석I 2016 김정원 I A I 는 비교적 알기 쉬움 i 정량분석: RASF 이용 다른 조건들이 동일할 때 원소들 피크의 상대적 세기 Analyzer, Source, Geometry dependent parameter X Sr 6443.2 1.843 6443.2 1.843 6009.1 5399.7 2.001 0.771 .6 1080 0.296 20.4% Element RASF Measured Intensity Sr 3d 1.843 6443.2 Ti 2p O 1s 2.001 6009.1 0.771 5339.7 C 1s 0.296 1080.6 Concentration 20.4 17.5 40.8 21.3 표면분석I 2016 김정원 RASF Relative elemental sensitivity 12 10 Relative Sensitivity 3d 8 4f 2p 6 4 4d 2 1s 0 Li B N F Na Al P Cl K Sc V M Co Cu G As Br Rb Y Nb Tc Rh Ag In Sb I Cs La Pr P Eu Tb Ho T Lu Ta Re Ir Au Tl Bi Be C O Ne M Si S Ar Ca Ti Cr Fe Ni Zn G Se Kr Sr Zr M Ru Pd Cd Sn Te Xe Ba Ce Nd S G Dy Er Yb Hf W Os Pt Hg Pb Elemental Symbol 표면분석I 2016 김정원 정량분석: complicated problem http://www.nist.gov/srd/surface.cfm i i (E ) e K. E. EA i ( E A ) Material-dependent inelastic mean free path (IMFP) e K. E. EB i ( EB ) Probing different volumes in mixed (A and B) materials Correction must be made !! 표면분석I 2016 김정원 TPP-2M equation for IMFP By Tanimura, Powell, Penn Surf. Interface Anal. 21, 165 (1994) E 2 E p [ ln( E ) (C / E ) ( D / E 2 )] 0.1 0.191 0.994 E p2 E g2 0.069 0.1 density (g/cm3) 0.5 C 1.97 0.91U D 53.4 20.8U (Å) Band gap (eV) atomic or molecular weight U N / M E p2 / 829.4 E p 28.8( N / M )1/ 2 free electron plasmon energy (eV) number of valence electrons 표면분석I 2016 김정원 Valence band spectra 3.0 HeI (21.21 eV) XPS (1253.84 eV) HeII (40.81 eV) 2.5 Zn 3d XPS 6 2.0 x10 final state UPS 1.5 EF 1.0 initial state 0.5 core levels 0.0 14 표면분석I 2016 김정원 12 10 8 6 4 Binding Energy (eV) 2 0 -2 Photoionization intensity (cross section) http://ulisse.elettra.trieste.it/services/elements/WebElements.html Lecture note: S. Kim (KAIST) 표면분석I 2016 김정원 Atomic Cross-section UPS XPS 표면분석I 2016 김정원 60 UPS의 상대적인 특징 1. Peak is broad Why? Due to electronic band structure or orbital hybridization 2. Feels more surface-sensitive than with XPS Why? Low electron attenuation length & high O atomic photoioinization cross-section at low photon energy 3. Very difficult to quantify Why? This is not atomic character but bonding character. It means that you need more clear and physical idea of your specimen in simplified way 4. Resolution is better Why? Gas discharge source provides a sharp fluorescent light 표면분석I 2016 김정원 61 Example of XPS analysis-1 Pigment from Mummy Artwork 표면분석I 2016 김정원 Example of XPS analysis-2 Valence electron state of Pt in PtPc 4+ 2+ 표면분석I 2016 김정원 Metal-semiconductor Contact Energy Level Diagram 표면분석I 2016 김정원 Organic-Metal contact in OLED Device performance depends on the balanced carrier injection and transport To maximize device efficiency : Enhance charge injection 표면분석I 2016 김정원 Energy levels and UPS spectra interface dipole ionization potential UV (X-ray) work function HOMO level h EF Ecutoff S. Braun et al., Adv. Mat.(2009) 표면분석I 2016 김정원 Angle-Resolved PES Better Surface Sensitivity SiO2 Si 표면분석I 2016 김정원 SiO2 Si XPS에 의한 SiO2 박막 두께 측정 7k XPS Intensity (counts) SiO2 Si 6k SiO2 5k 4k 3k Si 2k Analyzer 1k 108 106 104 102 100 98 96 Binding Energy (eV) exp ISiO I SiO2 [1 exp( t ox /L cos q )] 2 ISiexp ISi exp( t ox /L cos q ) x-ray (hν) e q L cos q t OX Lcosθ ln(R exp /R 0 1) I SiO 2 R0 Si Rexp exp I SiO 2 I I Siexp L = Attenuation length of Si 2p correct measurement of SiO2 thickness from R0 and L 표면분석I 2016 김정원 XPS에 의한 SiO2 박막 두께 측정 결과 SiO2 t OX Lcosθ ln(R exp /R 0 1) a-Si K. J. Kim, Thin Solid Films 500, 356 (2006) K. J. Kim, Surf. Interface Anal. 39, 512 (2007) 30.0k 0 sec 3 sec 6 sec 9 sec 12 sec 15 sec 20 sec 30 sec 40 sec 50 sec 60 sec 70 sec 80 sec 25.0k Intensity (cps) Film Thickness by XPS, ThXPS (nm) 3.0 20.0k 15.0k 10.0k 5.0k 0.0 108 106 104 102 100 98 Binding Energy (eV) 96 94 2.5 m : 1.00 (0.010) c : - 0.0004 (0.013) 2.0 1.5 1.0 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Nominal Thickness, Thnom (nm) 0 offset and the same linearity in the sub-nm region 표면분석I 2016 김정원 3.0 Solid in periodic potential 표면분석I 2016 김정원 Angle-Resolved UPS Band Mapping using Valence Spectra 표면분석I 2016 김정원 Band Structure of Graphite 표면분석I 2016 김정원 ESCA sputter depth profile 단점: ① sample damage ② very slow 표면분석I 2016 김정원 Sputtering conditions 표면분석I 2016 김정원 Photoemission Electron Microscopy SPEM PEEM 표면분석I 2016 김정원 Photoelectron Spectromicroscopy Contaminated Coronary Stent Secondary Electron Image XPS Spectrum of Contaminated Area F F O O C Cl Si Si F 1000 표면분석I 2016 김정원 800 600 400 Binding Energy (eV) 200 0 Contaminated Coronary Stent Secondary Electron Image Carbon Spectrum of Contaminated Area CF3 CF2O C-C CFO O=C-O CF 294 표면분석I 2016 김정원 C-O 290 286 Binding Energy (eV) 282 Contaminated Coronary Stent Fluorocarbon Map 500 x 500um 표면분석I 2016 김정원 Hydrocarbon Map Summary XPS Characteristics Surface sensitive Accurate quantification Detection of all elements above He Provides chemical state information Can be applied to both inorganic and organic materials Can be applied to both conductors and non-conductors UPS Characteristics More surface sensitive No quantification Information on chemical bonds and electronic band structure 표면분석I 2016 김정원 References 1. Electron spectroscopy, theory, techniques, and applications I-IV, edited by C.R. Brundle (Academic, NY, 1977) 2. Photoemission in Solids I&II, edited by M. Cardona and L. Ley (Springer-Verlag 1978) 3. G. Ertl and J. Kuppers, Low energy electrons and surface chemistry (VCH, 1985) 4. D.P. Woodruff and T.A. Delchar, Modern techniques of surface science (Cambridge, 1986) 5. Practical surface analysis, Vol.I, edited by D. Briggs and M.P.Seah (Salle & Sauerlander) 6. S. Hufner, Photoelectron Spectroscopy (Springer 1996) 7. J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES (Wiley 2003) 8. J.C. Vickerman and I.S. Gilmore, Surface Analysis, The principal Techniques, 2nd ed. (Wiley, 2008) 9. Website http://www.xpsdata.com/ 표면분석I 2016 김정원