2차년도 연구 수행계획 대비 실적 – RISP 3.2 ISOL Facility

Download Report

Transcript 2차년도 연구 수행계획 대비 실적 – RISP 3.2 ISOL Facility

ISOL 팀 연구성과
우형주, 강병휘, 추경호, 서창석, 황원주, 유승화
ISOL Team/RISP/IBS
2차년도 연구 수행계획 대비 실적 – RISP 3.2 ISOL Facility
Outline of the talk
•
2차 년도 연구 수행 실적
•
The development ststus of ISOL systems
ISOL target (10 and 35 kW)
Target Ion Sources (TIS)
Yield Estimation
High Resolution Mass Separator (HRMS)
A/q Separator
Radiation Shielding
• 3차 년도 연구 수행 계획
2차년도 연구 수행계획 대비 실적 – RISP 3.2 ISOL Facility
2차년도
연구 수행 계획 대비 실적 RISP 3.2
3.2 ISOL표적/이온원 및 빔 수송장치 상세설계
연구목표
연구범위
주요 연구내용
달성도
(%)
▪ 악티나이드계 카바이드 ISOL표적 제조공정 개발
▪ 악티나이드 계열 표적물질 제조기술 분석
ISOL
표적/이온원
상세설계
▪ 저출력 (10 kW급) 표적 상세설계
▪ 온도/열응력 해석과 방출효율 전산모사를 통한 10
kW 표적구조 최적화
▪ 고출력 (70 KW) 표적 신개념 설계
▪ 이중복사냉각구조의 Cone형 고출력 표적설계
▪ 희귀동위원소 생성율 상세계산
▪ 이온원별 사양 결정, 이온화효율 조사 및 RI빔
▪ 이온원 (FEBIAD 플라즈마, Surface, Laser)
상세설계
100
전송관/TIS챔버 설계
▪ 레이저시스템 설계, 발주 및 주요 원소 이온화효율
조사
ISOL
빔수송 system
상세설계
▪ 전단 질량분리기 상세설계
▪ 전단 질량분리기 (Rm ~300) 빔광학 계산
▪ RF-Cooler 상세설계
▪ RFQ-cooler (ε ~3 π mm mrad, ΔE<1 eV) 상세 설계
▪ 고분해능 질량분리기 상세설계
▪ 고분해능 질량분리기 HRMS (Rm~10,000) 빔광학
▪ A/q 분리기 상세설계
▪ Gas Catcher 시스템 개념설계
ISOL 부속시설
상세설계
▪ ISOL 표적 시설 Room 설계
100
(5차) 계산
▪ A/q 분리기 (RA/q ~ 3,00) 빔광학 (5차) 계산
▪ Cyclotron/ISOL 표적실 구체적인 배치도 작성
▪ 보수적 기준(5 μSv/h)의 차폐체 설계
100
2차년도 연구 수행계획 대비 실적 – RISP 3.2 ISOL Facility
Layout
of ISOL Facility
ISOL Spallation target (Future
upgrade plan)
SC LINAC: p 400 kW
ISOL Fission Target
Low Energy Science
0.5 - 18.5A MeV
Cyclotron Driver : 70 MeV, <1 mA,
proton beam
Intermediate energy science
~200 A MeV
Layout of ISOL Facility
Requirement for ISOL Target
70 MeV proton beam
1. The target thickness should be as thick as possible to maximize the in-target fission rate.
→ Requirement: large size of the target
2. The temperature should be as high as possible in order to reduce the release time.
3. The release time should be as short as possible to minimize the losses by the decay of RI.
→ Requirement: small size of the target → melt down of the target
Design goal : To find the optimum condition to maximize the release rate.
Technical drawing of 10 kW ISOL Target
Thermal analysis of 10 kW ISOL Target
Ions
Thermal stress
Incident proton beam:
70 MeV, 0.14 mA, (uniform)
Deposited power : 5.1 kW (target) / 2.9 kW (container) / 2.0 kW
Temperature
High power ISOL Target (35 kW )
Graphite support
Ta container
Inner heat sink (water-cooled STS)
• Target : 1.3 mm-thick UCx fins with UCx cone, ρ = 2.5 g/cm3
• Incident proton beam : 70 MeV, 0.5 mA, 68 mmФ (uniform)
• Inside radiant cooling with cooled STS water jacket (εSTS ~ 0.7)
UCx fins (1.3 mmt)
10 kW
35 kW
Deposited power (kW)
5.1
32.2
In-target fission rate (s-1)
1.6 x 1013
7.3 x 1013
Release efficiency of 10 kW ISOL Target
Trajectory of the isotope
26.3 % for
TD = 1 sec
Ts = 10-6 sec
133
Sn
94.6 % for
132
Sn
132
Sn
Transfer line for ISOL Target
RI yield estimation
Production rare for 10 kW ISOL target
Sn isotopes production rate for 10 kW ISOL target
Proton number
10 kW ISOL target
isotope
Thalf (s)
Yproduction
Yextrapolated
132Sn
39.7
2.3 × 109 ± 6%
9.0 × 108
133Sn
1.20
2.7 × 107 ± 58%
1.4 × 108
134Sn
1.12
8.9 × 106 ± 100%
1.6 × 107
135Sn
0.53
1.4 × 106
136Sn
0.25
9.7 × 104
137Sn
0.14
5.1 × 103
Neutron number
Expected on-target beam intensity for 10 kW ISOL target
132Sn
intensity for 10 and 35 kW ISOL targets
10 kW
35 kW
Deposited power (kW)
5.1
32.2
In-target fission rate (s-1)
1.6 x 1013
7.3 x 1013
In-target 132Sn production rate (s-1)
2.3 x 109
9.7 x 109
2.2 x 109
8.2 x 109
1.1 x 107
4.1 x 107
132Sn
release rate (s-1)
Exp. Hall (s-1)
• BERTINI-ORNL model
• assuming overall efficiency of ~0.5 %
YISOL = ΦP · σf · Ntarget · εrelease · εis · εcooler · εtransport · εCB · εacc.
Elements considered at RAON
 No universal ion source for on-line application
The three different schemes for the +1 isotope ionization
Design of Surface Ion Source
Surface (Laser)
Ion Source
Temperature
1200 - 2300°C
Cavity
L = 30 mm, ID = 3 mm
Cavity Material
Positive : Re (Ta, W)
Negative : LaB6, GdB6
Heating
Ohmic heating, ~300 W
Simulation code: RIBO
Design of FEBIAD (plasma) Ion Source
Temperature
Cavity
Materials
Cathode heating
Operating pressure
Plasma density, potential
Ion current density
Energy spread
ε95%@30kV
Extraction Potential
1500 - 2300°C
L = 2-3 cm, Φ = 1-2 cm, extr.: 0.5-3 mm
C, Ta, Mo, W, Al2O3 (BN, BeO)
Ohmic heating, 100-1000 W
10-5 ~ 10-4 mbar
108-1011 /cm3, 70% of anode vtg. (50-150 V)
1~20 μA/mm2
<2 eV
15-25 π mm mrad
40 kV for Sn
FEBIAD
Ion Source
Design of Resonance Ionization Laser Source
 Stepwise resonant ionization via one or
more intermediate levels
 Chemically selective, unique fingerprint of
each element ⇒ high isobaric and possible
isomeric selectivity
 Probable contamination by surface ionized
isobars (can be suppressed by ion repeller)
Laser Ion
Source
RIB
+
+
+
Ti:Sa
Ionization scheme of Tin
[Hot cavity laser ion source]
- Cavity (Ta) : L=30 mm, D=3 mm
- Temperature: ~2000°C
* Laser system (to be installed in 2013)
Ionization efficiency (𝜀)
Sn
22 %
Al
13 %
Ni
2.7 %
Be
3%
Ti:Sa laser
Nd:YAG laser
(Pump source)
Quantity
4 ea
1 ea
Wavelength
700-1000 nm
532 nm
Max. output
5W
100 W
Rep. rate
10 kHz
10 kHz
Pulse width
40~70 ns
100 ns
Ion optics for the Pre-separator
Pre-Separator
Beam envelope
Pre-Separator
5 mm
Focal Plane
y @ FF
ΔE = 10 eV
Design Parameter (Ref. isotope 132 Sn 35 keV, 30 π mm mrad)
Bρ
0.31 Tm
Beam size
±2 mm
Angular acceptance
±15 mrad
PreSeparator
Bending angle
90o
Bending radius
60 cm
Pole face angle
26.5o
Mass Resolving power
TIS
x @ FF
Beam Profile @ focal plane
300
* All components are electrostatic module except for dipole
High Resolution Mass Separator (HRMS)
Parameters for the HRMS
HRMS
Slits+FC+BPM
Dipole
BPM
Pump
Pump
V.V
Final Focus
Beam Separation
Quadrupole
Pump
BPM
HRMS layout
48 rod electrostatic multipole
Pump
Quadrupole
Slits+FC+BPM
V.V
Pump
Beam Incident
BPM
Pump Dipole
Ion Optics calculation for the HRMS
Dm = -3.4 cm/%
Separator Mass Resolving Power:
Rs= Dm/2xoM ~34,000
KE = 35 keV (Sn-132, ECR 기준)
emittance 2π mm mrad (Input)
- 1.8 π for DC
- 1.5 π for Pulsed (From RF-Cooler)
•
3 π acceptance (1 mm, 6 mrad)
•
Energy spread: ΔE/E=10-6
•
•
Code: GICOSY
Electric field strength
HRMS-35keV (kV)
Isobar separation
y
Code: GICOSY
5th order
Code: MOCADI 3rd order
132In
132Sn 132Sb 132Te
132ba,
1.0 mm
132Xe
Q1
-4.1 x 10-1
Q2
5.1 x 10-1
S1
-2.7 x 10-2
Q1
-5.3 x 10-1
M-Hexapole
-4.3 x 10-1
M-Octupole
-3.2 x 10-2
M-Decapole
-8.6 x 10-3
M-Dudecapole
-3.7 x 10-3
x (cm)
• Slits size : ±0.5 mm
 transmission efficiency of 132Sn=93 %
 contamination of 132Sb: 4 % for Y(132Sn) = Y(132Sb)
• No system instability effects taken into account
A/q 300 separator (resolving power = 300)
Ion optics calculation (5th order)
Code: GICOSY
A/q
Parameters for the A/q separator
Transmission efficiency of A/q 300 separator
Initial Beams at F0 (MOCADI)
Gaussian dist.
F0
F1
F1 slit : ΔxF1 = 1.2 mm
centered at x = -0.2 mm
F2
F2 slit : ΔxF2 = 3.0 mm
centered at x = 0.0 mm
Gaussian distribution
132Sn
- Δm
132Sn
132Sn
+ Δm
F0 to F1
82.3%
95.7%
63.4%
F1 to F2
6.9%
87.8%
3.3%
F0 to F2
5.7%
84.0%
2.1%
A/q spectra at F2 (MOCADI)
3rd order
35 kW ISOL target room Shielding
 Dose limits
• public area : 0.25 μSv/h
• control area : 5 μSv/h
Dose evaluation area : concrete 2 m x 2 m
2m
 Concrete composition
(weight fraction, %)
• H 0.55, O 49.9, Na 1.72,
Mg 0.24, Al 4.6, Si 31.51,
K 1.92, Ca 8.32, Fe 1.24)
• ρ~ 2.3 g/cm3
1.8 m
 Flux to dose conversion:
• ICRP-74 (1996) ambient
dose equivalent
1.5 m
 Required concrete thickness:
~4 m (< 5 μSv/h)
 Required concrete thickness:
~3.3 m (< 5 μSv/h)
 Required concrete thickness:
• ~2.7 m (< 5 μSv/h)
• ~3.4 m (< 0.25 μSv/h)
10kW ISOL target Activation
Block diagram for target activation simulation
Reference target configuration for the calculation
• Fission rate: 1.6x1013 s-1
• Deposited power in the disks:
4.97 kW
Gamma dose (due to UCx target activation)
~1,370 Ci
Cooling
Irradiation
2 weeks
2 weeks
• 70 MeV p, 0.143 mA (10 kW), uniform beam 45 mmΦ
• UCx disk : 50 mmΦ, 1.3 mmt, total 121.3 g
• Graphite box (2.65 mmt), Ta container (0.2 mmt)
 Dose rate at 2 m
• without shield : ~24 mSv/h
• with shield (2cm Lead) : ~2.4 mSv/h.
 absorbed dose in case of manual operation by
radiation worker
• 0.2 mSv for 5 min operation << 20 mSv(/y)
3차년도 연구과제 수행계획 RISP 3.2
3.2 ISOL표적/이온원 및 빔 수송장치 상세설계
연구개발목표
연구개발내용
대표그림
연구범위
▪ ISOL표적 제조실 구성
▪ ISOL 표적 제조공정 개
ISOL
표적/이온원부
공학설계
발
▪ ISOL 표적/이온원부
공학설계
▪ LaCx표적 시험제조 및 특성
<UCx 표적 제작>
조사
<FEBIAD 이온원>
▪ Target/Ion source 공학설계
(플라즈마/표면/레이저)
▪ TIS Front-End 공학설계
<이온원 후단 시스템>
▪ RI빔 수송라인 상세설계
ISOL
빔분리/수송계
상세설계
▪ ISOL 빔분리/수송계
상세설계
▪ RI 생산실 설계
보완
<ISOL 빔라인>
<다중극렌즈>
▪ HRMS (Rm ~ 10,000)
상세설계
<HRMS>
▪ A/q 분리기 (RA/q ~ 300)
상세설계
<ISOL 개발실, TIS 보관, TIS 이송 로봇 시스템>
<정전장 Bender>