Transcript ADINA-FSI

ADINA
(Automatic Dynamic Incremental Nonlinear Analysis)
- 유체, 구조, 열, 유체-구조 연성, 열-구조 연성을 위한 해석 프로그램 -
에이블맥스㈜
서울시 강남구 삼성2동 120-17호 JJ빌딩 2층
/
http://ablemax.co.kr
ableMAX Inc.
CAE 통합 솔루션 전문 기업 에이블맥스㈜
AbleMax Inc.
주요 고객사
http://ablemax.co.kr
3
AbleMax Inc.
1. ADINA – FSI[유체-구조연성]를 장점
1.1 ADINA-FSI 도입 효과
1.2 ADINA 특징
AbleMax Inc.
1.1 도입 효과
•
기존의 구조-유체 연성 해석 시스템은 유동해석으로부터 얻어진 유량을 이용하여 구조 의 변형
등을 예측하거나, 유동의 특성만을 주로 다루었기 때문에 출구의 유량, 압력, 온도 등을 정확히
예측할 수 없었다. 또한 시스템 내에서 발생하는 유체 유발 진동 및 소음 등은 기존의 수치해석
방법으로는 접근이 거의 불가능한 상태였다. 하지만 ADINA의 연성해석 기법의 사용으로 인해
이러한 문제들을 해결하고 있다. 특히 유체- 구조 연성해석 시 가장 까다로운 문제들인 구조의
대변형/대회전 등의 비선형성, 재료의 비선형성 등을 ADINA에서 해결할 수 있어 구조의 변형 및
집중 하중을 정확히 예측할 수 있어 피로수명 예측 및 설계개선에 필요한 중요한 데이터를 제공
할 수 있다.
•
Fully Coupled Two-way Fluid Structure Interaction (유체-구조 연성)
– 구조-유체 연성 해석에서 유체 압력에 의한 구조의 transient response를 얻기 위해서는 유
체와 구조간의 상호작용이 고려되어야 하며, 고온의 유체의 경우에는 유체에서 구조로의 열
전달 또한 고려되어야 한다. ADINA의 경우 열-유체-구조 연성해석을 수행할 수 있기 때문
에 유체압력 뿐만 아니라 열에 의한 구조적인 변형 및 응력을 동시에 예측할 수 있다.
–
•
ADINA의 경우 어떠한 가정 없이 본래의 유체와 구조의 지배방정식을 가지고 해석을 수행하
기 때문에 실제 작동상황에서 발생되는 선형적, 비선형적 반응들을 모두 얻어낼 수 있어 실
험에서 측정하기 어려운 데이터 들을 결과물로 얻어 낼 수 있기 때문에 설계상의 문제 등을
파악하는데 중요한 역할을 할 수 있다.
이미 국내 및 해외에서 원자력, 자동차 및 전자 , 건축, 토목 등의 분야에서 ADINA를 사용한 해
석이 수행되어 실험과 비교 검증되었으며, 개발단계에서도 그 결과가 성공적으로 적용되었다.
htp://ablemax.co.kr
5
1.2 ADINA-특.장점

최초로 상용화된 FSI(Fluid-Structure Interaction) 해석프로그램으로 연성해석이
쉽다.

일반적인 Iterative 방식의 Two-Way coupling 뿐 아니라, Direct Two-Way
Coupling이 가능하여 다양한 Method를 제공한다.

하나의 사용자 환경에서 여러 가지 해석 Module의 사용이 가능하다.

별도의 모듈 추가 없이 다양한 구조해석을 할 수 있다.

ADINA-Structure에서는 robust한 비선형 Contact 솔버를 제공할 뿐만 아니라 간단
한 workflow를 통해 사용자가 쉽게 적용할 수 있도록 되어 있다.

다양한 Material Property
• ADINA-Structure에서는 비선형 재질을 고려할 수 있는 다양한 재료모델을 제공하고
있으며 ADINA-CFD에서도 Newtonian 및 Non-Newtonian 모델을 다양하게 제공하
고 있다. 적용되었다.
htp://ablemax.co.kr
6
AbleMax Inc.
2. ADINA 소개
2.1 ADINA 소개
2.2 ADINA 구성
2.1 ADINA 소개
(Automatic Dynamic Incremental Nonlinear Analysis)
 선형/비선형 구조해석, 유동해석, 열해석 뿐만 아니라 유체-구조
연성해석(FSI) , 열-구조 연성해석(TMC)등의 연성해석이 가능한 해석
소프트웨어이다.
 ADINA의 개발사인 ADINA R&D, Inc. (USA) 는 1986 년에 MIT공대 교수인
Dr. K. J. Bathe (“Finite Element Procedures”의 저자) 에 의해
설립되었다.
 FEM (Finite Element Method) 과 FVM (Finite Volume Method) 을 함께
지원하며 유체-구조-열 연성해석 등 Multiphysics 해석이 가능하다.
 현재 ADINA 8.5 버전까지 개발되었으며, 올해 하반기에 ADINA 8.6 버전도
배포 될 예정이다.
htp://ablemax.co.kr
8
2.2 ADINA 구성
htp://ablemax.co.kr
9
2.2 ADINA 구성
http://ablemax.co.kr
10
ADINA
Structural Analysis
Drop Test
TMC(Thermo-Mechanical Coupling)
Frictional contact (Brake)
http://ablemax.co.kr
CFD (Computational Fluid Dynamics)
Karman vortex street
FSI (Fluid-Structure-Interaction)
Vortex induced vibrations
11
3. ADINA 해석영역 소개
3.1 ADINA-Structure
3.2 ADINA-CFD
3.3 ADINA –Thermal
3.4 ADINA-FSI
3.1 ADINA-Structure
-
선형/비선형 정적&동적 해석
Contact 해석
Frequencies/Modes 해석
Modal Superposition
Modal Stress
Modal Participation Factors
선형 좌굴해석
Rupture analysis
Crush Analysis of Automobiles
htp://ablemax.co.kr
Frequency Solution of Structure Coupled
with Inviscid Fluids for Reactor
Seismic Evaluation of the Cooper River
Bridge (by SC Solutions, Inc., California)
O-Ring Compression
13
3.1 ADINA-Structure(Contact)
Metal forming problem
Rubber boot at the base of a control stick
htp://ablemax.co.kr
Motion of a clip during push-in and pull-out
Drop test of a cell phone
14
3.1 ADINA-Structure(소성 변형, Impact)
Implicit
Explicit
자동차 차체에 대한 충격 분석
htp://ablemax.co.kr
자전거 헬멧의 충돌 분석
15
3.2 ADINA-CFD
 2 차원, 3 차원 압축ㆍ비압축 유동 해석
 Steady-State, Transient (Unsteady) 해석
 층류 및 난류 유동 (k-ε, k-ω, SST, DES, LES 모델) 해석
 Porous Media 를 이용한 유동 해석
 온도, 압력, 시간 함수의 유체 물성치 정의
 Free surface, Moving Boundary 해석
 Mass transfer, Multiphase Flow 해석
 Heat Transfer 해석
 Electric potentials
 Sliding Mesh Boundary Condition & Multiple Reference Frame
기능을 이용한 회전체 해석
Solving Unsteady Separated Flow Using
Large Eddy Simulation
http://ablemax.co.kr
Boundary layer meshing
Adaptive meshing
16
3.2 ADINA-CFD
다원주 주위의 유동 해석 (DES) - Results
htp://ablemax.co.kr
17
3.2 ADINA-CFD
particle trace animation is a band plot of the
steady-state mass fraction of acid mist
Simulation of Impeller Flow
htp://ablemax.co.kr
Engine Exhaust Manifold (Volvo)
Multiple Reference Frame Feature
18
3.3 ADINA-Thermal
•






Heat transfer problem in solid and structures
Radiation between surfaces of arbitrary geometries
Element birth-death options
capabilities for highly nonlinear material behavior
Electrostatic, seepage and piezoelectric analysis
Latent heat effects
Fully coupled thermo-mechanical analysis
- internal heat generation due to plastic deformation
- heat transfer between contacting bodies
- surface heat generation due to friction on the contacting surfaces
Disc Brake System
• Applications
- piezoelectric actuators
- disk brake system
Temperature field of turbine casing,
convection boundary conditions
htp://ablemax.co.kr
19
3.3 ADINA-TMC(Thermo-Mechanica coupling



Fully coupled thermo-mechanical analysis
Piezoelectric analysis (with user-supplied subroutines)
Soil consolidation analysis
•



A thermo-mechanical problem can include:
Internal heat generation due to plastic deformations of the material
Heat transfer between contacting bodies
Surface heat generation due to friction on the contacting surfaces
•
Applications
•
piezoelectric actuators
•
disk brake system
Frictional contact (Brake)
htp://ablemax.co.kr
20
3.3 ADINA-TMC(Thermo-Mechanical coupling
from 300 to 0 rpm in 5 seconds
the contact pressure and the temperature variation
htp://ablemax.co.kr
21
3.4 ADINA-FSI [유체-구조연성]
3.4.1 Overview of ADINA-FSI
3.4.2 Concept of ADINA-FSI
3.4.3 Iterative Two-Way FSI Coupling (Partitioned Method)
3.4.4 Direct Two-Way FSI Coupling
(Simultaneous Solution Method)
3.4.1 Overview of ADINA-FSI
- Fully coupled analysis of fluid flows (Navier-Stokes or Euler
fluids) with structural interactions including mass transfer,
thermal, porous, electric static coupling (Multi-physics)
- All capabilities available in solids/shell analysis are fully
coupled to all capabilities available in fluid flow analysis
- Entirely different meshes can be used for structure and fluid
- Large deformation
- Arbitrary Lagrangian-Eulerian (ALE) formulation
적용사례
- Automotive Systems (Shock Absorber, Fuel Rail, Hydraulic Mount,
ABS check valve, Fuel pump, etc.)
- Biomedical Applications
- Nuclear Power and Pipe Systems
- Compressors, Pumps, Impeller, Turbine
- Micro-Electro-Mechanical Systems (MEMS)
htp://ablemax.co.kr
23
3.4.2 Concept of ADINA-FSI
Fluid Structure Interaction
ADINA-CFD
ADINA-Structure
Automatic exchange
Between the solvers
FLUIDS
Solving the flow field
and extracting the
pressure forces upon
the structure
Pressure Distribution
htp://ablemax.co.kr
Structure
Boundary conditions
at fluid-structure interface
Calculating the structure
deformation due to external
and internal forces
Velocity Profile
24
3.4.3 Iterative Two-Way FSI Coupling (Partitioned Method)
Data Input
Fluid solver
controls
− Time step, Solution time
− Convergence parameters of the
coupled system
Solver Initialization
T<Tend
No
Exit
Fluid Solver
Fluid force
at F-S interface
New Mesh
Structure Solver
Displacement
at F-S interface
No
rd ≤ ed
rt ≤ et
Ye
s
Fluid Domain Remesh
htp://ablemax.co.kr
25
3.4.4 Direct Two-Way FSI Coupling (Simultaneous Solution Method)
Data Input
Solver Initialization
T<Tend
No
Exit
Fluid + Solid
• When the Newton-Raphson method is
used to solve the coupled system, Effective
matrix can be expressed as
Linearized
system
New Mesh
Displacement
at F-S interface
No
• Is not applicable to segregated method (FCBI-C)
rd ≤ ed
rt ≤ et
Yes
Fluid Domain Remesh
htp://ablemax.co.kr
26
4. ADINA- FSI 적용 사례
Turbulent Pipe Flow
The elements used are 8-node FCBI (Flow Condition Based Interpolation)
and the turbulence model is the standard k-epsilon
Fluid Pressure Plot and Particle Trace Plot
28
htp://ablemax.co.kr
28
Dynamic Analysis of Piping System
Effective Stress and Fluid Pressure
 The analysis is performed using the ADINA subsonic potential-based fluid elements to model the water in the pipe
and the ADINA 4-node shell elements (MITC4 elements) to model the pipe walls.
 The pipe is supported by flanges at the bottom of the model and filled with water under pressure.
 At time 1.0, an additional pressure pulse is applied to the water at the bottom left end of the pipe. The pressure
pulse propagates in the water.
 When the pressure pulse hits the left corner of the pipe (shown enlarged in the animation), high stresses are
generated in the pipe walls at that corner.
htp://ablemax.co.kr
29
Fully Coupled Thermal FSI Analysis
Schematic view of the pipe
 The fluid is modeled with the general CFD capabilities in ADINA.
 The structure is modeled including all nonlinearities, like large deformations, inelastic effects, and contact, available
in ADINA.
 The fully coupled thermal FSI solution is obtained with the general ADINA-FSI capabilities.
 Results of the Structure Model : temperatures, deformations and stresses.
 Results of the Fluid Model : temperatures, pressures, stresses and flow velocities.
Hot fluid flows through the flexible pipe, which is therefore heated by the fluid and loaded by the fluid tractions.
The temperatures, deformations and stresses in the pipe, together with the fluid flow and fluid temperature need be
solved for.
The fluid is modeled using FCBI-C elements and the structure is modeled using MITC9 shell elements.
htp://ablemax.co.kr
30
Fully Coupled Thermal FSI Analysis
Fluid Mesh and Velocity Plot
Fluid Pressure and Temperature Plots
htp://ablemax.co.kr
31
Fully Coupled Thermal FSI Analysis
Solid Mesh with Magnified Deformation and Plot of the Effective Stress, Thermal Strain
Temperature Plot, Plastic Flag Plot and Accumulated Effective Plastic Strain Plot
htp://ablemax.co.kr
32
One-Way Coupled Fluid-Structure Interactions
 In many FSI analyses the deformation of the solid is so small that its influence on the fluid flow is negligible.
 Only the fluid stresses need to be applied onto the structure
 No iteration between the fluid model and the solid model is necessary.
 one-way coupling FSI
 Oil (ρ = 1000 kg / m3; µ = 0.2 Pa·s) with Re = 2000, The pressure at the three outlets is 1 MPa
 The manifold is made of steel pipes (E = 200 GPa; n = 0.3) with a thickness of 2 cm
 The fluid mesh has 648,684 tetrahedral elements (2,594,736 equations) and the solid model was discretized with
20,017 4-node shell elements.
htp://ablemax.co.kr
33
One-Way Coupled Fluid-Structure Interactions
The displacements, magnified 50 times, on the solid structure
htp://ablemax.co.kr
Effective stresses on the structure
34
Thermal CFD and Stress Analysis of an Exhaust Manifold
Considerations:
•Turbulent fluid flow through the manifold (k-omega )
• Temperatures in the fluid and the structure
• Stresses in the structure.
Re = 0.74 x 105, Pe = 0.54 x 105, Pr = 0.73.
Mesh used for the complete model
velocity results in the outlet
Detail showing mesh mismatch
htp://ablemax.co.kr
Courtesy of Volvo Penta, Göteborg, Sweden
35
Thermal CFD and Stress Analysis of an Exhaust Manifold
Plot of temperature in the fluid and solid
Plot of pressure in the fluid
htp://ablemax.co.kr
Plot of effective stress in the solid
Courtesy of Volvo Penta, Göteborg, Sweden
36
Analysis of an Engine Exhaust Manifold
particle trace animation
Fluid Pressure Plot
Courtesy of Volvo Penta, Göteborg, Sweden
 This is the exhaust manifold of a Volvo Penta 6-cylinder D6 diesel engine using the Shear Stress Transport (SST)
turbulence model.
 The main benefit of the SST model is improved accuracy of results in the modeling of flows with adverse pressure
gradients or pressure-induced separation.
 The Reynolds number at the inlets of the manifold is approximately 13,000
 586,120 FCBI-C elements (~3.5 million equations)
 Applied no slip wall boundary conditions
 All the inlets have the same prescribed velocity and prescribed turbulence quantities, k and w..
htp://ablemax.co.kr
37
FSI Analysis of Break hose
Brake hose
• BRAKE Hose 작동조건을 고려한 최적의
Layout해석을 통한 주변 부품과의 간섭회피
• BRAKE Hose 내구수명 예측을 통한 제품 개발
/설계 기간단축 및 비용절감
Effective Stress
htp://ablemax.co.kr
38
Fluid Structure Interaction (FSI) Analysis of Fuel Pump
Average Mass Flow vs. Cam Rotating Speed
Inlet valve is open; fuel flows into chamber.
Outlet valve is open; fuel flows out of chamber
Courtesy of Delphi Automotive Systems
htp://ablemax.co.kr
Fuel Pump diagram
39
FSI Analysis of Gas Shock Absorber
Rod
Spring
Casing
Piston
oil
gas
htp://ablemax.co.kr
40
FSI Analysis of Shock Absorber
Pressure, Velocity Profile
ADINA에서는 한번의 유체-구조 연성해석으로 Reaction
force vs. Stroke, 구조물의 stress, power spectrum 등의
결과를 얻을 수 있다.
htp://ablemax.co.kr
41
FSI Analysis of Oil Dash Pot ACE Controls
Velocity Profile
Reaction force
htp://ablemax.co.kr
absorbs 50% more impact energy without an increase in size or cost
42
FSI Analysis of Hydraulic Mount
자동차 Hydraulic Mount 해석
Excitation: 400 Hz
htp://ablemax.co.kr
Excitation: 10 Hz
43
FSI Analysis of Automotive Hydraulic Engine Mount
Hydraulic engine mounts are used to
reduce automotive engine vibration
and noise. The performance of the
hydraulic engine mount due to
variations in the excitation frequency
and amplitude is of interest to the
designer.
htp://ablemax.co.kr
44
3-D Fuel Rail Model
해석 목적: 연료레일 형상 단면 형상과 재질 변화를 통해 수격 (water hammer) 현상에 의한 소음을 감소.
Inlet Pressure = 350kPa
Injection period/time length is controlled by time functions.
#2
#3
Time function
#4
1.1
#1 open
1
#3 open
#4 open
#2 open
0.9
Injector
Value
#1
0.8
#1
0.7
0.6
0.5
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
time
htp://ablemax.co.kr
45
Automotive Hydraulic Engine Mount
With FSI (Hysteresis)
Without FSI (only Structure)
htp://ablemax.co.kr
46
Parametric Study of a Check-Valve
Particle Trace Plot
 ADINA-FSI is used as the tool in a parametric study of check-valve design
features,
 The parametric study is the basis for an improved check-valve design.
 A comparison is made between experimental data and the results from ADINAFSI, and the comparison is very good.
htp://ablemax.co.kr
47
Rotating-Disk-Activated Valve for an Exhaust System
Solid: Elastic material
Fluid: Air (high speed compressible flows)
Fluid flow within the chamber
Stress of Valve
htp://ablemax.co.kr
48
Membrane Valve
This example shows the flow through a valve. The valve is partly closed by an elastic membrane. The increasing
pressure in the inlet of the tube increases the velocity. This causes an ascending dynamic pressure on the
membrane. The membrane deforms more and more and closes the valve.
htp://ablemax.co.kr
49
FSI analysis for Various Valves
Reciprocating Compressor
Two valves activated by a piston motion
htp://ablemax.co.kr
Rotating valve
ABS Check valve
50
CFD Thermal Analysis with Specular Radiation of Car Headlamp
Specular radiation
+ Fluid flow
(viscous incompressible flow,
temperature dependent properties )
+ Conjugate heat transfer
Comparison with Test Results (Thermal Camera Measurements)
Reference: W. I . Moore et al. “Thermal analysis of
automotive lamps using the ADINA-F coupled specular
radiation and natural convection model”, Computers &
Structures
htp://ablemax.co.kr
51
감사합니다!
htp://ablemax.co.kr