Computational Design of Si/SiO Interface for Advanced and Future Electronics Outline:

Download Report

Transcript Computational Design of Si/SiO Interface for Advanced and Future Electronics Outline:

Computational Design of Si/SiO2 Interface
for Advanced and Future Electronics
Anatoli Korkin
Nano & Giga Solutions, Phoenix, Arizona
Outline:
• Retrospection and Forecast
• Atomic Scale Materials Design
• A few steps from atoms to devices
• Future Research
• Software Development
Anatoli Korkin
.
Nano & Giga Solutions
SiO2/Si Interface: Why atomic scale insight is needed
Conventional CMOS devices shrink to the nanoscale dimensions
< 10 nm
Source
Drain
< 100 nm
New type of devices based on SiO2/Si interface are emerging
Quantum dots
Nano wires
Anatoli Korkin
.
Nano & Giga Solutions
Materials chemistry at atomic scale
INPUTS
Equipment Data
tool
geometries,
flow rates
MODELS
Empirical
reaction rate
constants,
Mechanisms
Reactor
Models
Material/Device
Process Data
Structure Data
dopants,
anneal temp
temp, pressure
concentrations
Atomic Scale
Ab initio
reaction rate
constants,
Mechanisms
Deposition
Models
crystal type,
grain boundary,
interfaces, etc.
Atomic Scale
Film &
Interface
structure
Film & Device
Models
OUTPUTS
Deposition Rates,
Film Uniformity:
Film & Interface
Electric Properties
Reactor & Process
Design
Structure & Stability:
& Reliability:
Process & Material Design
Device Design
Anatoli Korkin
.
Nano & Giga Solutions
An Integrated kMC-MD approach:
DFT cluster & periodic study:
reacting molecules and barriers
Chemical kinetics calculations:
elementary chemical reactions
Molecular dynamic simulation:
conformations & surface relaxation
Kinetic Monte Carlo simulation:
interface formation & film growth
A snapshot of an interface formation
Anatoli Korkin
.
Nano & Giga Solutions
Cluster & Periodic DFT Study
Cluster models of hydroxylated oxidized Si(100) surface
Periodic Slab
Cluster II
Cluster I
Anatoli Korkin
.
Nano & Giga Solutions
SiCl4 Adsorption on OH Terminated Si(100) Surface
Adsorption complex
Transition state
Product
E
(in kcal/mol)
-12.1
+1.7
Anatoli Korkin
.
Nano & Giga Solutions
-5.2
Kinetics of Gas-Surface Reactions
•
•
REACTION PATH PROFILES
X Y/s ==> Z  W/s
X=MCl4; Y/s{Si}–OH; Z  HCl; W/s  {Si}–OMCl3; M = Zr, Hf
Urp
Urp
C+


C-
C-
uo,0
X + Y/s
uo
0
C/s
uo,-
uo,+
0
0
qr
X + Y/s
Z + W/s
Anatoli Korkin
.
Nano & Giga Solutions
C+
uo
o,+
u0
0
C/s
qr
Z + W/s
A Scheme of the kMC-MD Program
Ewald sum and
optimal grid
generator
Molecular
mechanics
methods
Molecular
dynamics
solver
Summation rules,
QEq scheme,
neighbours search
algorithm Tersoff
correlation
Graphic view
.
Anatoli Korkin
.
Nano & Giga Solutions
Potential
library
Kinetic MC
solver
Model of Film Growth from Molecular Blocks
Describes film growth in:
Can be used to study:
1.
Physical Vapor Deposition
(PVD) process
1.
Film structure and roughness vs
substrate temperature
2.
Molecular Beam Epitaxy
(MBE)
2.
Film structure and roughness vs
energy of incident particles
3.
Ion assisted deposition (IAD)
methods
3.
Film structure and roughness vs
lattice misfit
4.
Chemical Vapor Deposition
(CVD)
4.
Stress relaxation in the film
5.
Non-equilibrium dynamical
processes during deposition
5.
Ion implantation
Anatoli Korkin
.
Nano & Giga Solutions
Force Field potential
E   Ei 
i
1
Vij

2 i j
Zr-O bond energy (eV)
Vij  f C rij aij f R rij   bij f A rij 
20
O
H
O
10
O
O
EtUHF
EsMP2
EtMP2
EsRHF
B
Z
r
H
H
H
0
0.1
H
r

Si
H
singlet
triplet
0.2
0.3
0.4
r (nm)
0.5
0.6
0.7
Anatoli Korkin
.
Nano & Giga Solutions
Model Implementation
Random position is selected over
film surface. A molecule at random
orientation with random velocity
impinges on the surface
Layer connected with
thermostat (velocity
rescaling)
Fixed layer to maintain
structure
Anatoli Korkin
.
Nano & Giga Solutions
Film Structure Dependence on the
Substrate Temperature & Energy of Incident Particles
T = 900 K, E = 3 eV
T = 1500 K, E = 3 eV
Anatoli Korkin
.
Nano & Giga Solutions
T = 1500 K, E = 30 eV
Initial models of SiO2/Si(100) interface
3D
2D
N.Tit & M. Dharma-Wardana,
JAP, 86 (1999) 1
Pasquarello et al.,
PRL, 74 (1995) 1024
Anatoli Korkin
.
Nano & Giga Solutions
Relative energies of oxygen vacancies
4
3
2
1
2D
3D
O1
0.0
0.0
O2
0.27
-
O3
0.55
-
Anatoli Korkin
.
Nano & Giga Solutions
O4
0.39
0.43 in eV
E’ Centers + OH defects
O
e-
O
Si
Si
I
Si
Bulk
Si
Si
III
Si
2D: 0.26
3D: 0.60
Si
Si
O
O
Si
Si
Si
II
O
O
O
Si
Si
Si
Interface
Anatoli Korkin
.
Nano & Giga Solutions
O
Si
0.0
0.0
Si
Novel interface models. I.
100
111
Anatoli Korkin
.
Nano & Giga Solutions
110
Novel interface models. II.
(100)
(111)
Anatoli Korkin
.
Nano & Giga Solutions
(110)
I. Stress Energies at Si-SiO2 Interfaces
m-n/2 {Si}
+ n/2{SiO2} → {SimOn}
Lattice
Novel interfaces
Dharma -Wardana’s
Extra layer of Si
Less O at the interface
ΔE (eV)
GGA
LDA
{Si50O40-111}
9.64
9.08
{Si66O40-111}
10.52
9.88
{Si60O52-110}
10.01
8.88
{Si52O44-100}
10.78
11.12
{Si68O44-100}
11.19
11.58
{Si52O36-100}
8.58
9.00
Anatoli Korkin
.
Nano & Giga Solutions
II. Stress Energies at Si-SiO2 Interfaces
Chemical:
TOTAL
CHEM (∆)
{Si50O40-111}
9.64
5.68 (3.96)
Si(+3)=0.24
{Si66O40-111}
10.52
5.68 (4.84)
Mechanical:
{Si60O52-110}
10.01
5.68 (4.33)
{Si52O44-100}
10.78
6.80 (3.98)
{Si68O44-100}
11.19
6.80 (4.39)
{Si52O36-100}
8.58
5.68 (2.90)
(Hamann, PRB, 2000)
Lattice
Si(+1)=0.47
Si(+2)=0.51
Bond lengths and angles
are not at optimal
Polarization:
Coulomb interactions
Anatoli Korkin
.
Nano & Giga Solutions
Elementary quantum dots: Si-in-SiO2 and SiO2-in-Si
Si dot in SiO2
SiO2 dot in Si
Total stress
-O: 1.84 (0.48) -2O: 3.13 (0.99)
-3O: 4.94 (1.19) -4O: 5.14 (0.96) (chemical stress)
Anatoli Korkin
.
Nano & Giga Solutions
+O: -0.32 (0.94) +2O: 1.08 (1.45)
+3O: 2.64 (1.65) +4O: 3.84 (1.88)
1 nm Si wire in 2 nm SiO2 box: Initial steps
+
Anatoli Korkin
.
Nano & Giga Solutions
1 nm Si wire in 2 nm SiO2 box: Generic view
Anatoli Korkin
.
Nano & Giga Solutions
1 nm Si dot in 2 nm SiO2 box: clever (?) guess
β – quartz: 3 x 3 x 3
Si (100): 2 x 2 x 2
a = b = c = 21.48 Å
α = β = γ = 90o
Si243O401
Si - 42½
SiO2 - 201½
Anatoli Korkin
.
Nano & Giga Solutions
1 nm Si dot in 2 nm SiO2 box
Anatoli Korkin
.
Nano & Giga Solutions
Si/SiO2/Si Gate Stack Model
Total potential (eV)
Leakage current (A/cm2)
L. Fonseca et al.
Anatoli Korkin
.
Nano & Giga Solutions
Model SiO2/Si/SiO2 channel
H-saturated Pb
centers
L. Fonseca et al.
Anatoli Korkin
.
Nano & Giga Solutions
Transport results for SiO2/Si/SiO2
L. Fonseca et al.
Anatoli Korkin
.
Nano & Giga Solutions
KHIMERA: Kinetics from Molecules to Reactor
Reactant
Transition state
Individual reaction rates
Product
Complex chemical kinetics
Anatoli Korkin
.
Nano & Giga Solutions
Minimum energy path
Chemistry in CVD reactor
Import of QC Results
Viewing of the
Molecular Structure
Initial Settings for
Reaction Rates
Calculation
Summary of QC Results
Anatoli Korkin
.
Nano & Giga Solutions
Calculated Reaction Rates
Results of
Thermochemical
Calculations
Graphical Representation
of Results
Anatoli Korkin
.
Nano & Giga Solutions
Model, and process conditions
Results
Initial conditions and
calculation details
Anatoli Korkin
.
Nano & Giga Solutions
SAGEMD: Atomic scaleaterials design
Pre-processor using GUI
(with OpenGL based graphic
engine)
Solver
(Fortran-90 modules)
Post-processor using GUI
Anatoli Korkin
.
Nano & Giga Solutions
Structure
Modification
Anatoli Korkin
.
Nano & Giga Solutions
Property
Analysis
Anatoli Korkin
.
Nano & Giga Solutions
Summary
1. Designed novel SiO2-Si interfaces with (111) and (110)
surface termination comparable in the quality with SiO2-Si (100)
2. Incorporation of initial oxygen atom in Si demonstrates thermodynamic stabilization effect.
Future plans
1. Comparative study of SiO2-Si and other dielectric/semiconductor
Interfaces for advanced and future electronics: SOI, novel devices, etc.
2. Comparative study of SiO2-Si interfaces in planar structures, wires,
and quantum dots, e.g. 1D- vs 2D- vs 3D-nanostructures.
Anatoli Korkin
.
Nano & Giga Solutions
Co-authors:
University of Florida: R. Barlett
SEMATECH: G.
Tyndal National Institute, Ireland:
Bersuker
J. Greer
Collaboration:
Brazil: L. Fonseca Japan: K. Yamashita
Russia:
A. Aleynikov, A. Knizhnik
Anatoli Korkin
.
Nano & Giga Solutions