物理與生命系統間的思考 詹明宜 物理所生物物理研究室

Download Report

Transcript 物理與生命系統間的思考 詹明宜 物理所生物物理研究室

物理與生命系統間的思考
詹明宜
物理所生物物理研究室
物理 v.s. 生命系統

物理


Physical science: branches of science such
as physics, chemistry and geology that are
concerned with things that do not have
life..
生命系統?


Life or Living: the person or animal that is
alive.
Alive: they have life.
植物人

在國際醫學界通行的定義是“持續性植物狀態
(persistent vegetative status)”,簡稱PVS。所謂植
物生存狀態常常是因顱腦外傷或其他原因,如溺水、
中風、窒息等大腦缺血缺氧、神經元退行性改變等導
致的長期意識障礙,表現為病人對環境毫無反應,完
全喪失對自身和周圍的認知能力﹔病人雖能吞咽食物、
入睡和覺醒,但無黑夜白天之分,不能隨意移動肢體,
完全失去生活自理能力﹔能保留軀體生存的基本功能,
如新陳代謝、生長發育。
腦死

腦死:“腦死亡”病人是永遠不可能存活的,其主要特
征是自主呼吸停止、腦干反射消失。而PVS患者有自
主呼吸,脈搏、血壓、體溫可以正常,但無任何言語、
意識、思維能力。他們的這種“植物狀態”,其實是
一種特殊的昏迷狀態。因病人有時能睜眼環視,貌似
清醒,故又有“清醒昏迷”之稱。
死亡

中止所有生理功能,包括循環系統、腦
神經系統等等。且這些生理功能的中止
是不可逆的。
生命系統







生態系統
個體(人)
功能系統(感覺,循環…)
器官(耳朵)
組織(骨頭,韌帶)
細胞(頭髮細胞)
胞器
「葉克膜」葉醫師
「葉克膜體外循環機」
這套機器能取代心肺功
能利用體外循環輔助昏
迷病患,維持血液循環。
在邵曉鈴發生車禍後,
葉克膜體外循環機適時
發揮功能,成功救活邵
曉鈴,民眾就誤以為簡
稱「葉克膜」的就是邵
曉鈴急救團隊中的一員。
卡拉OK大賽



第一首歌
第二首歌
第三首歌
Pink Floid: The Wall…1982



1961年8月
15日開始建
築
封鎖東西德
交往
1989年11月
11日,柏林
圍牆正式開
始拆毀
為甚麼我們可以聽見聲音?


Sound- vibrations of the molecules in a
medium like air.
The hearing spectrum for humans is
approximately between 20 to 20,000 Hz.


Wavelength: 1700cm~1.7cm
Wave propagation
耳朵



物理的特性
生理功能及解剖特性
病理:趨向於違反生理功能及解剖特性
波的疊加原理(Superposition
Principle)

當幾列波在介質中某
點相遇時, 該點的振
動位移是各列波單獨
存在時在該點引起的
位移的疊加
波的疊加原理(Superposition
Principle)
駐波(standing waves)
拍(beats)
Cochlea from a human fetus
Pitch Perception


1.Frequency Theory: basilar membrane
vibrates in synchrony with the sound source
& causes action potentials to occur at about
the same frequency.
( a 100 Hz tone, would have 100 action
potentials per second in the auditory nerve)



Pro: good for low frequencies
Con: bad for high frequencies,
Frequency Code
oscillations of the
basilar membrane
impulses in auditory
nerve fiber
Pitch Perception



2. Place Theory: basilar membrane is
tuned to specific frequencies at different
locations on the membrane & vibrates
whenever that frequency is present.
Pro: good for high frequencies
Con: bad for low frequencies
Pitch Perception

Volley theory- Neurons may fire in different
phases (time-locked) that when taken together
may code the pitch.
If all of these neuron fibers are taken together they
may produce a volley of impulses by various
fibers that as a whole code the pitch.

The volley theory seems to work for tones up
5000 Hz.
Volley Principle
Summary of theories
1. Low Frequencies are coded by frequency of
nerve impulses (up to 50 Hz).

2. High frequencies are coded in terms of the
place along the basilar membrane which shows the
greatest activity. (over 5000 Hz)

3. For intermediate frequencies (from 60 to 5000
Hz) pitch is coded through a combination of
Volley & place.
Sound Localization




1. Monaural cues– use one ear
A. Pinna - funnels in sound waves; is used to
help locate sounds in space.
B. Head movements – you can move your head
to locate a sound.
C. Doppler effect – sounds coming toward you
will be perceived as “louder” & “higher” pitched
than sounds moving away from you.
2. Binaural cues

A. Inter-aural Intensity cues - the difference in
loudness between the two ears will help us locate
where the sound came from.

When the sound source is off to the side of the
head, the head casts a “shadow” through which the
sound must pass through.

This decreases the intensity of the sound on the far
side (ear farther away from the sound).

works best for high frequencies.
Auditory Pathways
• 60% of the cells in the
cochlear nucleus of
each ear project to the
contralateral olivary
nucleus.
• Cells in the olivary
nucleus thus receive
binaural input.
Sound Localization
心血管的一些物理思考
血壓分配
心血管系統像亞瑪遜河?
蜿蜒而流 細細綿長
還是比較像一個輸配電系統
電線到那兒 開關就有電?
心血管像河流般流動
如果以動量為傳輸之原動力,則血管之分
支不宜有突然之彎曲。
循環系統最好像一顆倒置的樹一樣,而心
臟在樹根的位置,而且樹枝與樹幹間的相關位
置不可移動。
流量理論 : (1) 為何有心舒壓?
為了流量之增大,主動脈之心舒壓應為
負值最好,而所有脊椎哺乳動物之心舒
壓皆為正 80 mmHg左右。
流量理論 : (2) 為何心跳為固定速率?
: 以流量之觀點,有動量既可。心跳率
依生理代謝多寡變動,心跳不必固定速
率。
流量理論 : (3) 主昇動脈為何轉彎
180°?
: 心臟打出為衝量,經過180°轉彎則動
量完全消耗。在左心室中, 心臟由肌
肉收縮將血液變成衝量射出。但轉彎
180°以後只有2%呈動能形態。
流量理論 : (4)為何血管流入器官呈
90°?
: 90°是將動量完全無分量之角度。
但腎動脈、脾動脈、氣管動脈、胸動
脈等進入器官之動脈皆與主動脈呈
90°,表示進入器官之血液,不是以
動量為動力。生理上希望將動量之影
響降到最低。
流量理論 : (5)為何大動物心跳慢,
小動物心跳反快?
:大動物所送血量較大,流量大,則
心跳應較快,小動物體積小,所送血
量亦少,心跳應較慢,更何況與(體
積)1/3成反比要如何解釋?
流量理論 : (6)動物如何運動?
:這是一個極大的問題。動物都有循環
系統。如果輸送血流靠動量,"動量為
向量",我們一舉手,一投足都會嚴重
妨害血液的循環。我們應是不能動的植
物才行。
流量理論 : (7)血管中之動能只佔2%
動脈血管內之位能佔98% 。如何靠僅餘
的2%之能量將血液輸送? 98%在血管壁
上的能量在做甚麼?
流量理論 : (8)為何微循環為網狀?
不論器官、或穴道,其小動脈皆成網狀
。以流量之觀點,微循應為樹狀,而不
是網狀,因為網狀使阻力大增。
共振理論 : (1)為何有心舒壓?
答: 心舒壓之目的至少有三 :
1. 提高壓力以增加彈性位能,將血管中
之能量由動能轉換為位能。
2.此壓力充滿整個動脈血管網路中,以
維持血液之最低供應量,充“氣”之情
形如氣球一樣,在任何有開口的地方,
皆可釋出血液。
3.維持器官及血管之彈性。以維持各器
官及血管之共振頻率,以達成阻抗為最
低之效率。
共振理論 : (2)為何心跳為固定速率?
答: 每個大血管皆有其共振頻率,每個器官
也有其共振頻率。心跳必須與這些頻率
配合,其阻力才小。
共振理論 : (3)為何主昇動脈轉彎
180°?
答: 心臟以收縮的方式產生很大的瞬間流量
。但以流量輸送是阻力非常大的。所以
在主昇動脈以180°之轉彎,將動能轉化
為血管壁上的振動位能。
共振理論 : (4)為何血管流入器官前
呈90°?
答:大動脈是波動能量是輸送的主幹。對分
枝器官而言,連接處之 大動脈,就像
心臟一樣將壓力波送進器官來。此90°
之轉彎,可將流量之影響降到最小,僅
有壓力波可由大動脈連接處順利傳入。
共振理論 : (5)為何大動物心跳慢,
小動物心跳反快?
答:大器官之共振頻率低, 小器官之共振
頻率高。人的器官是如此,不同動物也
一樣。 大動物器官也大所以心跳必須
慢,才能維持共振,提高運送效率。
共振理論 : (6)動物如何運動?
答:在血管壁上的振動是以位能存在的。
位能不是向量。而且此振動方向與血
管走向垂直,不論血管方向如何改變
,血液永遠由近心端向遠心端輸送。
血壓波為長波,看不見各處之細節,
因而手臂彎曲、彎腰等,都只有輕微
之影響,不致造成血流中止。
共振理論 : (7) 為何微循環為網狀?
答:網狀的血管,相當於大電容(電路) 。
配電器、電壓穩定器都要大電容以吸
引電壓波過來。因為電壓波也是長波
,看不到細節,必須以大電容,好讓
電壓波看到。所以器官及穴道,皆成
網狀以吸引血壓波過來。
共振理論 : (8)為何血管中之動能僅
佔2%,位能佔98%?
答:像在高壓輸送線中之能量一樣,位能佔
多數,電流佔少數,以減少阻力之消耗
。
氣的樂章
A historical review of the
sphygmomanometers
你有高血壓嗎?
The consideration of blood
circulation in modern medicine

The ancient Greek physician
Galen (130~200AD) first
proposed the existence of
blood in the human body


the heart constantly produced
blood
Until 1616 when William
Harvey (1578~1657)
announced that Galen was
wrong

proposed that there was a finite
amount of blood that circulated
the body in one direction only.
The first invasive blood
pressure measurement (1733)

The first recorded instance
of the measurement of
blood pressure was in 1733
by the Reverend Stephen
Hales



AD. 1677~1761
A British Veterinarian
Fellow of Royal Society
Hales’s first invasive blood
pressure measurement

Fifteen years beforehand, he
took a horse and inserted a brass
pipe into an artery. This brass
pipe was connected to a glass
tube. Hales observed the blood in
the pipe rising and concluded
that this must be due to a
pressure in the blood. At this
time the technique was invasive
and highly inappropriate for
clinical use.
The first Physician-Physicist
(1828)

Poiseuille (1799~1869)



Qualified as a doctor (1828)
Won a medal on the use of a mercury
manometer for the measurement of arterial
blood pressure (1828)
Connect the manometer to a cannula was
inserted into arteries that is as small as
2mm in diameter
Ludwig’s invasive Kymograph
(1847)





Until 1847 that human blood pressure
was recorded by Carl Ludwig's
kymograph with catheters inserted
directly into the artery.
Ludwig's kymograph consisted of a
U-shaped manometer tube connected
to a brass pipe cannula into the artery.
The manometer tube had an ivory float
onto which a rod with a quill was
attached.
This quill would sketch onto a rotating
drum hence the name 'kymograph',
'wave writer' in Greek.
However blood pressure could still only
be measured by invasive means.
Karl’s conceptual non-invasive
Sphygmomanometer (1855)

Karl Vierordt, found in 1855 that with
enough pressure, the arterial pulse
could be obliterated. Vierordt used an
inflatable cuff around the arm to
constrict the artery.
Etienne Jules Marey’s
sphygmomanometer (1860)


applied Vierordt's principle of applying counter
pressure to overcome the arterial pressure
the arm was enclosed in a glass chamber filled
with water, which was connected both to a
sphygmograph and to a kymograph
Samuel Siegfried Karl Ritter von
Basch’s sphygmomanometer (1881)




consisted of a water-filled bag connected
to a manometer.
The manometer was used to determine
the pressure required to obliterate the
arterial pulse.
Direct measurement of blood pressure by
catheterisation confirmed that von
Basch's design would allow a noninvasive method to measure blood
pressure.
Feeling for the pulse on the skin above
the artery, was used to determine when
the arterial pulse disappeared.
Development of Present-day
Technique: the Ideas of an Italian
Doctor Riva-Rocci (1896)




Ease of application, rapidity in action,
precision, harmlessness to patient
Apply a cuff, a rubber bag, surround the
circumference of the arm to press the
brachial artery and was increased until the
radial pulse could no longer be palpated.
The pressure in the cuff was registered by
the usual mercury manometer
the reading at which the pulse reappeared
was taken as the systolic blood pressure.
Placing a stethoscope
over the brachial artery (1905)


In 1905 N C Korotkoff, a
Russian surgeon, reported
that by placing a stethoscope
over the brachial artery at the
cubital fossa,
Distal to the Riva-Rocci cuff,
tapping sounds could beheard
as the cuff was deflated,
caused by blood flowing back
into the artery.
Current blood pressure
measurement
K-sound and the
oscillometry
NIBP
EN standards in
sphygmomanometers




EN 1060-1:1995 Non-invasive sphygmomanometers Part 1: General requirements EN 1060-1:1995/A1:2002
EN 1060-2:1995 Non-invasive sphygmomanometers Part 2: Supplementary requirements for mechanical
sphygmomanometers
EN 1060-3:1997 Non-invasive sphygmomanometers Part 3: Supplementary requirements for electromechanical blood pressure measuring systems EN 10603:1997/A1:2005
EN 1060-4:2004 Non-invasive sphygmomanometers Part 4: Test procedures to determine the overall system
accuracy of automated non-invasive
sphygmomanometers
Medical device regulations







US (FDA: 510(k), PMA, IDE, QSR)
CE (MDD, IVD, AIMD)
Japan (MHLW, 厚生省, PMDA)
Canada (CAMCAS)
China (SFDA)
Australia (TGA)
GHTF