Transcript Atomic Layer Deposited HfTiOx composite film On Si (100) with Al O
Atomic Layer Deposited HfTiOx composite film On Si (100) with Al
2
O
3
as buffer layer
Adam Kueltzo
Thornton Fractional North High School
July 30
th
, 2009 University of Illinois at Chicago Advanced Materials Research Laboratory (AMReL) Mentors: Dr. G. Jursich and Dr. C.G. Takoudis Departments of Bioengineering and Chemical Engineering
Motivation for Research
An Al 2 O 3 buffer layer is applied to improve the quality of the interfacial layer between high-k films (TiO 2 and HfO 2 ) and Si substrate To run experiments in the atomic layer deposition (ALD) reactor and to examine thin film growth rates To analyze the resulting thin films on silicon using spectral ellipsometry, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM).
Hypotheses
A self-limiting reaction between a titanium, hafnium, and aluminum precursor, an oxidizer (H 2 O), and the silicon substrate Good film uniformity on the substrate and film thickness control (using a spectral ellipsometer) Absence of organic compounds in the resulting film structures (using FTIR spectroscopy) Stoichiometry of the high-k material and the bonding states of the elements (using XP Spectroscopy)
New High-k Dielectric Materials
The past few summers work has been conducted with Hafnium and recently Titanium and Aluminum C = k A t "High-k" stands for high dielectric constant, a measure of how much charge a material can hold. Hafnium oxide has a k value of 20-25 Titanium oxide has a k value higher than 30
Why deposit multiple precursors on substrate?
Enhances dielectric constant (k) Aids in the size miniaturization of semiconductor devices
Atomic Layer Deposition (ALD)
Uses pulses of gaseous reactants (precursor and oxidizer) alternately fed into the reactor Allows for atomic layer thickness control Film thickness depends on number of deposition cycles
ALD Process
“One Cycle” Precursor Purge (N 2 ) Oxidizer (H 2 O) Purge (N 2 ) http://www.cambridgenanotech.com/
ALD Reactor Set-up Modification capacity of three metal precursor deposition compared with previous two Ice bath Hot wall reactor Operating Pressure = 0.2-1.5 Torr Moisture pulse = 0.05 s C
Detailed on next slide
Female Elbow (VCR) Union Tee (VCR) To ALD Reactor Female Elbow (VCR) Ti precursor vessel (existing) Al precursor vessel (added)
Acceptable Temperature Window
ALD reactions usually occur between 200-400 °C in the reactor Above 400 °C, the chemical bonds are not stable and the precursor may decompose
200 ° C 400 ° C
Below 200 °C, the reaction rate may be reduced www.icknowledge.com/misc_technology/Atomic%20Layer%20Deposition%20Briefing.pdf
Properties of the Precursors
TDEAT Tetrakis(diethylamido)titanium C
16
H
40
N
4
Ti
-Molecular weight 336.42 g/mol -Appearance Clear orange liquid -Melting point < -20°C -Vapor pressure 0.5 torr at 90°C -Density 0.92 at 33°C -Viscosity 8.8 cSt at 34°C www.praxair.com
TDEAH
Tetrakis(diethylamino)hafnium Hf(N(CH 2 CH 3 ) 2 ) 4
Molecular weight 467.0 g/mol Appearance Pale yellow liquid Melting point -68°C Vapor pressure 0.2 torr at 90°C Density 1.25 g/mL at 32°C Viscosity 5.7 cSt at 30°C www.praxair.com
TDEAA
Tris(diethylamino)aluminium Al(N(C 2 H 5 ) 2 ) 3
- Molecular Weight 486.7 g.mol-1 - Physical State Low MP solid - Melting Point 28-31°C - Boiling Point 250°C - Vapor Pressure 0.2 Torr @ 100°C - Density 0.915 g.cm-3 @ 25 ° C www.aloha.airliquide.com
Experimental Conditions
Reactor Temperature ~ 200 o C Operating pressure .2-1.5 Torr Precursor Temperatures (Hf 67 o C) (Ti 62 o C) (Al 100 o C) Purge Gas (N) Purge time after precursor pulses - 10 seconds Purge time after oxidizer (H 2 O) pulse – 20 seconds kept at 0 o C to stabilize vapor pressure
Initial TDEAA Bubbler Configuration
70 60 50 40 30 20 10 0 80 Reaction temperature: 200 o C Plugs number : 5 90 100
Bubbler Temperature ( o C)
110 Ser i es 1 Ser i es 2 Ser i es 3
70 60 50 40 30 20 10 0 3 Reaction Temperature: 225 º C Precursor Temperature: 100 ºC 4
Saturated ALD Plugs for TDEAA
5 6 7
Number of plugs
8 9 10
Temperature window for TDEAA
3.5
3 2.5
2 1.5
1 0.5
0 125 Precursor Temperature: 100 ºC Plugs Number: 7 150 175 200 225 250
Reaction Temperature (ºC)
275 300 325
Growth Rate of HfO2 (at the Reaction T of 200 ºC)
140 120 100 80 60 40 20 0 0 25 Grow th Rate = 1 Å/cycle 50 75
Cycle number
100 125 150
Future Work
Further validate the deposition rate of TDEAA - Thickness determination Deposition of TDEAH and TDEAT Apply TDEAA buffer layer to silicon substrate
References
Anthony, J.M., Wallace, R.M., & Wilk, G.D. (2001). High-k Gate Dielectrics: Current Status and Materials Properties Considerations. Applied Physics Review, 89 , 5243-5275. Brain, Marshall. (n.d.). How Semiconductors Work. [WWW page]. http://computer.howstuffworks.com/diode.htm
. Cambridge NanoTech, Inc. (2003-2007). Cambridge NanoTech: Atomic Layer Deposition Systems. [WWWpage]. http://www.cambridgenanotech.com/. IC Knowledge LLC. (2004). Technology Backgrounder: Atomic Layer Deposition. [WWWpage]. http://www.icknowledge.com/misc_technology/Atomic%20Layer%20Deposition%20 Briefing.pdf
. Intel® Education. (n.d.) Inside The Intel® Manufacturing Process: How Transistors Work. [WWWpage].
http://www.intel.com/education/transworks/index.htm
. Majumder, P., Jursich, G., Kueltzo, A., & Takoudis, C. (2008). Atomic Layer Deposition of Y 2 O 3 Films on Silicon Using G158.
Mutschler, Ann Steffora. (2007). Intel, IBM Embrace High-k Gates for 45nm. Electronic News. Peters, Laura. (2007). Behind the Breakdown of High-k Dielectrics.Semiconductor International. p. 30. Praxair Technology, Inc. [WWWpage]. http://www.praxair.com
Zant, P. V. (2000). Microchip Fabrication (4 th ed.). New York: McGraw Hill.
Air Liquide[WWWpage]. http://www.airliquide.com/en/semiconductors/aloha-advanced-precursors/high-k.html
Acknowledgements
EEC-NSF Grant #0926260 Mentors: Dr. Greg Jursich and Dr. Christos Takoudis Doctoral students: Qian Tao and Manish Singh