Tevatron Status and Physics Perspectives D.Glenzinski Fermilab

Download Report

Transcript Tevatron Status and Physics Perspectives D.Glenzinski Fermilab

Tevatron Status and Physics
Perspectives
D.Glenzinski
Fermilab
19-May-2008
Outline
•
•
•
•
•
Introduction
Status of the machine
Status of the experiments
Physics Results
Conclusions
19-May-2008
D.Glenzinski, Fermilab
2
Fermilab Tevatron
Wrigley
Field
Chicago

Cellular
Field
• pp collider at world’s
highest energy
Ecm = 2 TeV
Tevatron
CDF
DØ
• Run-I 1990-1995
(110 pb-1 /experiment)
• Run-II 2001-2009
(~7 fb-1 / exp expected)
Main Injector
• Performing excellently
19-May-2008
D.Glenzinski, Fermilab
3
Tevatron Run I
• Top Quark discovered
in 1995
• CDF and D0 jointly
– Each uncovered ~20
t-tbar events in 60 pb-1
• With full Run 1 dataset
– ~35 t-tbar events /exp
– Full set of top properties
explored
19-May-2008
D.Glenzinski, Fermilab
4
Tevatron RunII Performance
2008
2007
2006
2005
2002
2003
2004
• Doubled dataset each year for four years
• Expect 1.5-2.0 fb-1 per year in >=2007
19-May-2008
D.Glenzinski, Fermilab
5
Tevatron Performance
Average Anti-Proton stack rate
• Anti-Protons
– Doubled stacking rate
over last two years
– No longer limiting
factor
19-May-2008
D.Glenzinski, Fermilab
6
Tevatron Anti-Protons
AfterBefore
2-3 months
• Making anti-protons is a tough business
p + Ni → p + p + p + pbar + X
1 anti-proton / 60k protons
We collect 2x1011 pbar/hour
19-May-2008
D.Glenzinski, Fermilab
7
Tevatron Performance
Average Anti-Proton stack rate
• Anti-Protons
– Doubled stacking rate
over last two years
– No longer limiting
factor
Luminosity delivered/experiment/week
• Complex up time
– 20 years old
– Exceeding original
design specs by x300
– Constant vigilance
required
19-May-2008
D.Glenzinski, Fermilab
8
Tevatron Accelerator Complex
• Need entire complex working well to consistently
deliver high luminosity runs
19-May-2008
D.Glenzinski, Fermilab
9
10
Tevatron Luminosity Projection
10
extrapolated
from FY09
8.6 fb-1
8
FY10 start
8
)
Integrated Luminosity -1[fb-1]
9
7.2 fb-1
6
7
6
4
5
4
We’re in this area now
3 fb-1
≈23 mA/hr
June ‘07
NOW
Highest
∫ Lum
Lowest
∫ Lum
2
3
2
FY08 start
0
1
0
• Will reach 6.5 fb-1 / experiment by end 2009
• A 2010 run would bring that to ~8 fb-1 each
19-May-2008
D.Glenzinski, Fermilab
10
Tevatron Experiments
CDF
D0
• Two experiments: CDF and D0
– Multipurpose collider detectors
– International collaborations, 600+ members each
19-May-2008
D.Glenzinski, Fermilab
11
CDF Detector
Features:
• Precision silicon
vertexing
• Large radius drift
chamber (r=1.4m)
•
•
1.4 T solenoid
projective calorimetry
(|| < 3.5)
• muon chambers
(|| < 1.0)
ŷ
• Particle identification
• Silicon Vertex Trigger
ẑ
x̂
   ln(tan(  / 2))
19-May-2008
D.Glenzinski, Fermilab
12
DZero (D0) Detector
Features:
•
Precision silicon vertexing
•
Outer fiber tracker
(r=0.5m)
•
2.0 T solenoid
•
hermetic calorimetry
(|| < 4)
•
muon chambers
(|| < 2.0)
•
New trigger and more
silicon in Summer 2006
(Run2b)
19-May-2008
D.Glenzinski, Fermilab
13
Detector Performance
QuickTime™ and a
decompressor
are needed to see this picture.
• CDF&D0: stable operations since 2002
• Experiments keeping-up with luminosity
• No known problems in foreseeable future
19-May-2008
D.Glenzinski, Fermilab
14
Physics Productivity
CDF Papers
D0 Papers
• A Tevatron publication or thesis every 2.5 days
• CDF and D0 each publishing ~35 papers/year
19-May-2008
D.Glenzinski, Fermilab
15
Production cross-section (barns)
Physics Program
19-May-2008
with 1 fb1
1.4
In x110fb1 -1
1 x 1011
6 x 106
6 x 105
•
•
•
•
•
7,000
3,000
100 ~ 10
D.Glenzinski, Fermilab
QCD
Heavy Flavor
Electroweak
Top Quark
New Phenomena
Unique capabilities
– Energy Frontier
– Bs, Bc, b-baryons
– LHC groundwork
– Top Quarks
16
Inclusive Jet Cross Sections
• Agreement with QCD over wide kinematic range
• Most precise measurements to date
• Provides constraints on PDFs
19-May-2008
D.Glenzinski, Fermilab
17
W-Charge Asymmetry
• Constrains PDFs in LHC relevant region
19-May-2008
D.Glenzinski, Fermilab
18
Jet Shapes and UE
Forward
Distance from Jet Axis
Central
Energy around Jet (GeV)
Energy in Annulus ( GeV )
Bins of Jet Energy
Distance from Jet / rad
• Fragmentation and Underlying Event well modeled
19-May-2008
D.Glenzinski, Fermilab
19
V+Jets Processes
• Several theory groups have made V+hf calculations
– Mangano, et al., at LO – original motivation for ALPGEN (hep-ph/0108069)
– Campbell, Ellis, Maltoni, Willenbrock at NLO – using MCFM (hep-ph/0611348)
• These calculations are hard to get right
– At LO both V+bb and V+bq are important
– Large NLO enhancements (e.g. ~x2 for W+b)
• Experimental feedback important for Tevatron and LHC
– V+hf important backgrounds to ttbar, single-top, higgs
b
l
W+

q
W-
q’
b
q-
q+
qq+
W
l

W   nq    jets
tt  W bW b  qq
19-May-2008
g
D.Glenzinski, Fermilab
20
Z+jets Cross Section
• Good agreement with NLO predictions
19-May-2008
D.Glenzinski, Fermilab
21
Z+hf Cross Section
• Sensitive to b-quark density in proton
• Important background for Higgs, single-top,…
• Measure b fraction by fitting mass at
secondary vertex.
• Updated results now have differential
distributions in jet ET, eta, Z PT, Njets ,Nb-jets
• Significant variations among theory
predictions
• with 2 fb-1, data statistically inconclusive but
prefer Pythia at low ET and Alpgen/NLO at high
ET… need more data to differentiate
19-May-2008
D.Glenzinski, Fermilab
22
W+hf Cross Section
 CDF (W  b  jets)  BR(W   )  2.7  0.3(sta)  0.4(sys) pb
 Alpgen+Pyt (W  b  jets)  BR(W   )  0.78  0.18 pb
19-May-2008
D.Glenzinski, Fermilab
23
W+hf cross section
• W+c, important in 1-j and 2-j (e.g. higgs, single-top)
– Ratio(obs) = 7.7 +/- 1.7%
– Ratio(Alpgen+Pyt) = 4.0 +/- 1.2%
19-May-2008
D.Glenzinski, Fermilab
24
Spectroscopy
B
CDF 1.1 fb-1
*
s2

b mass determination

• Made first observations of several b-hadrons
• Program of determining their masses, lifetimes, etc
• Together make nice test of HQET/Lattice
19-May-2008
D.Glenzinski, Fermilab
25
Precision Bs Lifetime
• Recent determination of Bs lifetime using hadronic decays
0



• Fit fully+partially reconstructed Bs  Ds ( ) X decays
19-May-2008
D.Glenzinski, Fermilab
26
Precision Bs Lifetime
• Ratio of lifetimes interesting
– Theory:
 (Bs )
1.00  0.01
 (B0 )
– PDG07:
 (Bs )
 0.94  0.02
 (B0 )

• Single most precise

– This:
 (Bs )
 0.99  0.03
 (B0 )
 samples
• Control
0
B 0  D (K    )  , B 0  D* (D (K   )  ) 
0
B   D (K   ) 
19-May-2008
D.Glenzinski, Fermilab
27
Direct CP Violation in B+
b
u
b
u, c, t
u
c
c
s, d
u
• CPV in SM due to different
complex phases
• New Physics may alter the
s, d
measured phases
c
c
• J/K+ improves WA by x2
u
A(B+ -> J/K+): ~0.003 (SM)
0.0074 ± 0.0061(stat) ± 0.0027(syst)
A(B+ -> J/+): ~0.01 (SM)
-0.09 ± 0.08(stat) ± 0.03(syst)
19-May-2008
D.Glenzinski, Fermilab
28
CPV in Bs System
• CP-Violation in Bs system unconstrained by Bd
measurements
• Expected to be small in SM (s=
s=-0.04)
– Small New Physics effects can have large impact
19-May-2008
D.Glenzinski, Fermilab
29
CPV in Bs System
CDF 1.35 fb-1
2k Bs candidates
D0 2.8 fb-1
2k Bs candidates
Mass (J/ ) (GeV/c2)
• Bs -> J/ not a pure CP eigenstate
– Time dependent angular analysis required to separate CP-even and CPodd components
– Builds from B-mixing techniques (e.g. flavor tagging)
19-May-2008
D.Glenzinski, Fermilab
30
Angular Analysis in Bd
• Use Bd->J/ K* decays
– Perform time-dependent angular analysis
– Measure relative phases and amplitudes
– Compare to B-factory measurements
Parameter
CDF
BaBar
hepex07040522
|A0|2
0.569 ±
0.009
± 0.009
0.556 ± 0.009
± 0.010
|A|||2
0.211 ±
0.012
± 0.006
0.211 ± 0.010
± 0.006
||-0
-2.96 ± 0.08
± 0.03
-2.93 ± 0.08
± 0.04
-0
2.97 ± 0.06
± 0.01
2.91 ± 0.05
± 0.03
• Important cross-check of method
• Competitive with B-factories
19-May-2008
D.Glenzinski, Fermilab
31
CPV in Bs System
CDF
1.35 fb-1
• SM p-value: D0=7% CDF=15%
– D0 constrains strong phases assuming SU(3)
symmetry, CDF unconstrained
– Work ongoing to combine (un)constrained results
19-May-2008
D.Glenzinski, Fermilab
32
A Crack in the SM?
4 of 6 inputs unique to Tevatron, 6 of 6 include Tevatron results.
• CDF and D0 will continue to have a very active heavy
flavor program --- many measurements stats limited
19-May-2008
D.Glenzinski, Fermilab
33
DiBosons and TGC
• Exploring Triple Gauge Couplings (TGC) with WW, WZ, ZZ, W, and
Zsamples
– Neutral couplings: ZZZ, ZZZ(better than LEP2)
– Charged couplings: WWZ, WW (complimentary to LEP2)
• Gauge structure of SM very constraining
– Deviation unambiguous signal of New Physics
• With 2 fb-1 reach LEP2 sensitivities
– All channels statistically limited
TGC
19-May-2008
CDF 2 fb-1
LEP 2
h3Z
±0.083
(-0.2,0.07)
h4Z
±0.0047
(-0.05,0.12)
h3
±0.084
(-0.049,0.008)
h4
±0.0047
(-0.02,0.034)
D.Glenzinski, Fermilab
34
Precision W mass
CDF Run II
• CDF Run II world’s best using only 200 pb-1 of data
• Both experiments aiming for new results at ICHEP
– With 2 fb-1 CDF extrapolates to Mw~25 MeV/c2,
comparable to present world avg; D0 will be similar
19-May-2008
D.Glenzinski, Fermilab
35
Precision Top Quark Mass
• Precision Mt, Mw
cornerstones of our EWK
program
• New Mt results ( ) in all
three channels
 Mt=1.4 GeV/c2 (0.8%)
– x2 better than Run2 goal
– Working to improve
understanding of dominant
systematic uncertainties
– Could reach 1 GeV/c2
19-May-2008
D.Glenzinski, Fermilab
36
Mt and MW and MH
Heinemeyer, Holik, Stockinger, Weber, Weiglein‘08
Weiglein‘07
• Prefers light higgs mass… where TeV has sensitivity
19-May-2008
D.Glenzinski, Fermilab
37
SM Higgs Production
• For MH=140-110: (WH+ZH)=100-300 fb
• For MH=180-140: (ggH)=150-500 fb
19-May-2008
D.Glenzinski, Fermilab
38
SM Higgs Decay
• Most important
decays
– Low mass
h  bb, W W,  + 
– High mass

h  W W 

19-May-2008
D.Glenzinski, Fermilab
39
Higgs: Experimental Signatures
• Most important at Low mass
– Signature determined by W, Z decays
WH  ebb , bb
ZH  e +e -bb ,   -bb , b b
• Most important at High mass
– Leptonic W decays dominant
– Some sensitivity also from WH production

H  W W    
WH  WW W     
• Each experiment has results in all these final states
19-May-2008
D.Glenzinski, Fermilab
40
Higgs: Experimental Signatures
• Additional channels now being added
– (qq )H or VH  qq  + 
– WH  q q bb , ZH  qq bb
+

VBF

qq
H

qq
W
W
–
19-May-2008
D.Glenzinski, Fermilab
41
SM Higgs Search
• New channel: (V)H--> qq
• Sensitive to all major production mechanisms
– WH, ZH, ggH, Vector-Boson-Fusion
• Inclusion improved CDF sensitivity by ~10%
19-May-2008
D.Glenzinski, Fermilab
42
SM Higgs Search
• Require one -->e or , the
other -->hadronic
• 2 jets Et>15 GeV, ||<2.5
• Rigorously optimized
– Investigated 16 NN
and their combinations
• Rigorously cross-checked
– Bgd in 0j and 1j bins
– Signal in Z-->
19-May-2008
D.Glenzinski, Fermilab
43
Tevatron Combined Higgs Limits
MH=115 GeV/c2
Exp: 3.3
Obs: 3.7
19-May-2008
MH=160 GeV/c2
Exp: 1.6
Obs: 1.1
D.Glenzinski, Fermilab
arXiv:/0804.3423 [hep-ex]
44
CDF+D0
95% CL expected limit/SM
Higgs Sensitivity
160 GeV
Tevatron (Jul05)
Tevatron (Jul06)
Tevatron (Dec07)
Private (Feb08)
• Our sensitivity is improving faster than 1/sqrt(L)
– We’ve lots of ideas… and we’re implementing them!
19-May-2008
D.Glenzinski, Fermilab
45
CDF+D0
95% CL expected limit/SM
Higgs Sensitivity
115 GeV
Tevatron (Jul05)
Tevatron (Jul06)
Tevatron (Dec07)
Private (Feb08)
• Our sensitivity is improving faster than 1/sqrt(L)
– We’ve lots of ideas… and we’re implementing them!
19-May-2008
D.Glenzinski, Fermilab
46
Tevatron Higgs Reach
Projected CDF+D0 Reach
2010
2009
ICHEP
• We can eliminate all MH<180 GeV/c2…
or get first glimpse if 150<MH<170 GeV/c2
19-May-2008
D.Glenzinski, Fermilab
47
Tevatron Higgs Reach
• Some comments…
– The lines in the previous plot represent the 50th
percentile of pseudo-experiments… can get lucky
or unlucky
– 3 evidence possible, even likely, if MH in right
range and enough luminosity
– In the absence of evidence, resulting CL limits
more stringent that 95% over most MH<180
 Seriously strains the SM
 Eliminates large (and popular) class of SuSy models
(because they require lowest M<140 GeV/c2)
19-May-2008
D.Glenzinski, Fermilab
48
Tevatron Hunt for the Higgs
• We’re taking this very seriously
19-May-2008
D.Glenzinski, Fermilab
49
Search for New Phenomena
Occupying the energy frontier means the
Tevatron experiments have the world’s best
sensitivity to many different New Physics
models and signatures
19-May-2008
D.Glenzinski, Fermilab
50
CDF 1 fb-1
Search for New Phenomena
• No significant deviations from SM
… but not for lack of trying
• Thorough program looking for BSM
• Over next two years expect another
factor 4 or more in data
19-May-2008
D.Glenzinski, Fermilab
51
Closing Remarks
• Tevatron performing well
– 4 fb-1/experiment in hand
– Expect 6-8 fb-1/experiment by end RunII
• CDF and D0 performing well
– Publishing wide spectrum of world class results
(Tevatron 2007 avg: 1 publication / 5 days)
– Ready to take advantage of coming data
– Enthusiastically pursuing New Physics and Higgs
19-May-2008
D.Glenzinski, Fermilab
52
Closing Remarks
• The LHC will inherit
– Precise determination of ms and constraints on
CP phase in Bs sector Bs
– Precision Mt (Mt=1.0-1.5 GeV/c2) and
Mw (Mw=15-25 MeV/c2)
– A more restricted New Physics parameter space
– A higgs mass
19-May-2008
D.Glenzinski, Fermilab
53
Backup
• Backup slides follow
19-May-2008
D.Glenzinski, Fermilab
54
CDF SM Higgs Limit
MH=115 GeV/c2
Exp: 4.6
Obs: 4.9
19-May-2008
MH=160 GeV/c2
Exp: 2.5
Obs: 1.7
D.Glenzinski, Fermilab
55
D0 Higgs Limit
MH = 160 GeV
Exp.: 2.4
Obs.: 2.2
MH = 115 GeV
Exp.: 5.5
Obs.: 6.4
19-May-2008
D.Glenzinski, Fermilab
56