Status of the LINAC2 project Cristina Vaccarezza on behalf of the SPARC-X team

Download Report

Transcript Status of the LINAC2 project Cristina Vaccarezza on behalf of the SPARC-X team

Status of the LINAC2
project
Cristina Vaccarezza
on behalf of the SPARC-X team
5/23/2016
1
The SPARC-X team
D.Alesini, S.Bertolucci, M. Bellaveglia, M.E.Biagini, R.Boni, M.Boscolo,
M.Castellano, A.Clozza, G.Di Pirro, A.Drago, A.Esposito, M.Ferrario,
L.Ficcadenti, D. Filippetto, V.Fusco, A.Gallo, G. Gatti, A.Ghigo, S.Guiducci,
M.Migliorati, A.Mostacci, L.Palumbo, L.Pellegrino, M.Preger, C.Sanelli, M.Serio,
F.Sgamma, B.Spataro, A.Stella, F.Tazzioli, C.Vaccarezza, M.Vescovi, C.Vicario,
INFN-Frascati
F.Alessandria, A.Bacci, F.Broggi, S.Cialdi, C. DeMartinis, D. Giove, C.Maroli,
M.Mauri, V.Petrillo, M.Romè, L.Serafini, INFN-Milano
M.Mattioli, P. Musumeci, M. Petracca, INFN-Roma1
L.Catani, E.Chiadroni, A. Cianchi, C. Schaerf, INFN-Roma2
F.Ciocci, G.Dattoli, A.Doria, F.Flora, G.P.Gallerano, L.Giannessi, E.Giovenale,
G.Messina, P.L.Ottaviani, G. Parisi, L.Picardi, M.Quattromini, A.Renieri, C.
Ronsivalle, ENEA-Frascati
J.B. Rosenzweig, S. Reiche, UCLA , Los Angeles, CA, USA
5/23/2016
2
D. Dowell, P. Krejcik, P. Emma, SLAC, Stanford, CA, USA
Outline






LINAC2 project goal
SPARXINO proposal & scientific case
General layout, Operating scenario
Preliminary cost estimate
Beam Dynamics & FEL simulation
results
Summary
5/23/2016
3
Project Goal

High brightness beam injector
for SASE and seeded FEL
experiments (SPARX project)

energy upgrade:
 High Energy
1.5 GeV e-- 1 GeV e+
Beam Test Facility
 2 GeV option for e(X-band acc. sections)
5/23/2016
4
Peak & average brilliance evolution
5/23/2016
5
Italian Initiatives
a) Feb 2001: Call for proposals- 7.5 M€ for R&D
SPARC (CNR-ENEA-INFN-INFM-S.Trieste-U.Roma2)
b) Dec 2001: Call for proposals- 67 M€ for a
X-ray FEL source
1) SPARX (CNR-ENEA-INFN-Univ.Roma2)
2) FERMI (INFM-Sincrotrone Trieste)
5/23/2016
6
5/23/2016
7
From the SPARX
proposal:
“X-rays are presently utilized in many research and
application fields, for :





Atomic, molecular and cluster
physics
Plasma and warm dense matter
Condensed matter physics
Material science
Femtosecond chemistry
Life science
Single Biological molecules and
clusters

Imaging/holography

Micro and nano lithography


High peak brightness and short pulse duration (few femtoseconds)
will be the main characteristics of the SPARX source.
By using a 2.5 GeV linear electron accelerator and two magnetic
undulators it will be possible to emit radiation at 10 nm and 1.5 nm.
Exploitation of 3rd and 5th harmonics will allow emission in the
range between 10 and 2 nm for the first beam line and between 1.5
and 0.3 nm for the second beam line.”
5/23/2016
8
The final decision of the Research Ministry
was to support two strategic programs:
FERMI
A VUV-FEL user
facility at 40-100 nm
SPARX
An R&D program for a
X-ray FEL test
facility at 3-10 nm
5/23/2016
9
I = 2.5 kA
K=3
se = 0.03 %
en=4
lcr
[nm]
The
SPARX-ino
opportunity
en=1
Energy [GeV]
I = 1 kA
K=3
se = 0.1 %
en=4
lcr
[nm]
en=1
5/23/2016
10
Energy [GeV]
SPARX-ino
proposal:
► upgrade the DAFNE Linac to
drive a 3-10 nm SASE-FEL
► beam energy : 1.2 - 1.5 GeV
► upgrade the injector to a RF
photo-injector (SPARC-like)
► Study group is preparing a
proposal within 2005
5/23/2016
11
Brilliance of X-ray radiation
sources
12.4
FEL Covering from the VUV to
the 1 Å X-ray spectral range:
new Research Frontiers
5/23/2016
1.24
0.124
l (nm)
SPARX
12
Scientific
case
“Time resolved X-ray microscopy”, D. Pelliccia, CNR-INFN
“Image reconstruction of non periodic nanostructured objects
using coherent X-ray diffraction (CXD)” , G. Campi, CNR-IC
“Proprietà ottiche del “mezzo vuoto” a corte lunghezze
d’onda” G.Cantatore Uni-TS
“Low energy X-rays QED tests”, M. Milotti Uni-UD
and more on Radiation Transport, Diagnostics, Beam
Handling, Detectors and Ultrashort Radiation Pulses
FOR MORE INFO...
http://www.lnf.infn.it/conference/sparx05/
5/23/2016
13
…objectives:

Input from the workshop:
Wavelength range as close
as possible to the water
window (~ 2.5 – 4.5 nm)
… and to the carbon window

Flexible design:
F. Bonfigli et al, SPARX workshop, LNF 9-10 May 2005
SASE & Seeded configurations
• Improve coherence length
• Short pulses (fs range)
• Increase wavelength operation
5/23/2016
range
14
Schematic layout:
1.2 GeV (basic)
E= .150 GeV E= .490 GeV
f= -22°
L0
X-band
sz~ 210 mm
5/23/2016
E= 1.2 GeV
R56= 26÷32 mm
BC
L1
DL
L2
X-band
sz~ 50÷90 mm
sd < 1 E-3
15
The DAFNE LINAC
The main LINAC components are the following
:
 Thermionic gun
 Prebuncher and buncher at f=2.856GHz.
 High current TW LINAC with output energy 
250 MeV
 Positron converter
 Capture section
 Low current e+e- TW LINAC with output
energy  510 MeV.
5/23/2016
16
The DAFNE complex
5/23/2016
17
Linac1: Low Energy section
RF
gun
5/23/2016
18
Linac2: High energy section
Now : Etot ~ 1.2 GeV
Etot ~ w 4 S-band :
Etot ~1.5
w3
X-band
2 GeV
GeV
e-, 1GeV
e+ e-
dogleg start
5/23/2016
19
Operating Scenario
Sparxino @ 1.5 GeV &:
a) e+ 510MeV w damping (+
accumulator)
i. Dafne data taking
ii. Dafne high energy w ramping
iii. Dafne high luminosity w time sharing
b) e+ 1 GeV
i. BTF experiments
ii. on energy in Dafne2 with new injection system
5/23/2016
20
High energy
dogleg 3D model
5/23/2016
21
Preliminary cost estimation
1/3
SPARXino – 1.2 GeV S-Band
1 new waveguide system (M€ 0.4)
1 X-band station (M€ 1)
45 MW - RF Stations
1 SPARC clone (M€ 5)
SPARC
75
150
150
PC
750 MeV
1 magnetic chicane (M€ 0.6)
480 MeV
4 new S-band stations (M€ 2.8)
Estimated cost:
5/23/2016
> 1100 MeV
22
M€ (4.8 + 15% + 5) = 10.5M€ +7M€ (buildings & plants upgrade)
Preliminary cost estimation
2/3
SPARXino – 1.5 GeV S-Band
1 new waveguide system (M€ 0.5)
1 X-band station (M€ 1)
1 SPARC clone (M€ 5)
SPARC SPARC
75
150 75
45 MW - RF
45 Stations
MW - RF Stations
150
150
150
PC
PC
150
750
300
1 compressore (M€ 0.6)
4 new acc. sections (M€ 0.7)
6 new stations (M€ 4.2)
Estimated
cost
5/23/2016
23
M€ (7.0 + 15% + 5) = 13 M€ +7M€ (buildings & plants upgrade)
Preliminary cost estimation
3/3
SPARXino – 1.8 GeV S+X Band
75 MW - X-band Stations
45 MW - RF Stations
10 MW
150 MW
0.4 msec
SPARC
150 MW
0.4 msec
PC
750
600
45 MW
45 MW
480 MeV
> 1800 MeV
5/23/2016
24
Beam Dynamics
 Working point analysis
 Invariant envelope matching
principle
 Jitter sensitivity and optimization
 Microbunching instability
5/23/2016
25
Beam optics
mag. compressor
dogleg
to the undulator
SPARC
matching
line
5/23/2016
old Linac
26
Parmela simulation Np=50k
Two possible working points:
a) Ipk av 450A w X-band at gun exit
4
Exn(mm-mrad) for eth=0.34 mm
Xrms(mm) for eth=0.34 mm mrad
Exn(mm-mrad) for eth=0.6 mm
Xrms(mm) for eth=0.6 mm mrad
3.5
3
2.5
2
1.5
1
photoinjector
exit Ipk-av 450A
0.5
0
0
200
400
600
Z(cm)
800
1000
1200
final beam
Ipk-av 1.1 kA
5/23/2016
27
Two possible working points:
b) Ipk av 300A wo X-band at gun exit
photoinjector
exit Ipk-av 300A
final beam
Ipk-av 1.4 kA
5/23/2016
28
l= 4 nm
l= 5 nm
l= 3 nm
5/23/2016
29
High energy scenario E~1.5 GeV
Sparxino0x
High Energy
l= 3 nm
5/23/2016
30
Laser pulse jitter
Ipk-av ~450 A
Df= -1°
reference
5/23/2016
Df= +1°
31
Df= -1°
Laser pulse jitter
Ipk-av ~450 A
reference
5/23/2016
Df= +1°
32
Df= -1°
Laser pulse jitter
Ipk-av ~300 A
reference
5/23/2016
Df= +1°
33
Df= -1°
Laser pulse jitter
Ipk-av ~300 A
reference
5/23/2016
Df= +1°
34
Microbunching instability
simulation results
5/23/2016
35
from Elegant with Np=2M from the
photoinjector exit up to undulator
entrance
lf =9 mm, Af= 1 %
5/23/2016
no modulation
36
from Elegant with Np=2M from the
photoinjector exit up to undulator
entrance
l0 =5 mm, A0= 5 %
5/23/2016
lf =15 mm, Af= 30 %
37
in detail:
lf =15 mm, Af= 30. %
lf =9 mm, Af= 1 %
lf =25 mm, Af= 11 %
5/23/2016
38
Summary table
5/23/2016
sd0
(%)
l0
(mm)
A0
(%)
lf
(mm)
Af
(%)
2.0E-5
3
5
26
4.
5
5
15
30
10
5
25
11
3
10
26
8
5
10
12
58
10
10
26
24
5
.1
8.7
1.2LSC
39
about a laser heater…

to increase uncorrelated energy spread
and….

Fast (slice length determined by laser pulse length) control on the
longitudinal electron phase space

Convert energy modulation into density modulation. Enhanced SASE.
(Ref. Zholents Phys. Rev. ST Accel. Beams 8, 040701, 2005)

Attosecond radiation with a few optical cycle-laser slicing technique (Ref.
Zholents and Fawley, PRL 92, 224801, 2004)

Short current spike at the bunch tail to study superradiance regime (Ref.
Giannessi, Musumeci, Spampinati, Journal of Applied Physics, 98, 043110
(2005))

Weak FEL detection with a modulated laser-based beam heater (Ref. Emma
et al. PAC 2005)
5/23/2016
40
FEL radiation analysis
5/23/2016
41
e-beam @ the UM
•Beam energy 1.2 GeV
•Flat longitudinal current profile ~ 1kA
•Pulse Duration ~ 300μm ~ 1 ps
•Slice energy spread < 2 10-4
•Slice emittances < 1 mm-mrad
5/23/2016
42
SPARC Undulator
Reference:
Beam Energy
Peak Current
Slice energy spread
Slice emittance
2.8 cm period
1.2 GeV
1 kA
< 2 10-4
< 1 mm-mrad
Resonance condition
2.5
 K2 
1 

2 

2
K
l
lFEL  UM2
2
Low Energy : 1.0GeV & 1.0kA
High Energy : 1.5GeV & 1.5kA
5/23/2016
1.5 GeVTuning range 3.5 – 15 nm
1.5 kA
1.0 GeV
1.0 kA
1.5
1
SPARC Undulator
λUM=2.8 cm – KMAX ~ 2.5
2
4
Wavelength tuning range - 15 – 4 nm
6
8
10
Wavelength (nm)
12
14
16
44
SASE – Performances
Simulations made with GENESIS 1.3 + Perseo for the high order
harmonics
1
10
0.5
0
50
# Photons/pulse
0
5/23/2016
1 10
15
1 10
14
1 10
13
100
150
z (um)
200
250
1
300
Pulse Energy (mJ)
Power (/ max Power)
SASE PULSE (4.5nm – 33m)
0.1
0.01
1 10
1 10
12
1 10
11
1 10
10
3° harmonic
data
2
4
6
8
10
Wavelength (nm)
12
14
3
2
4
1 GeV
1.25 GeV
1.5 GeV
1 GeV - 3h
1.25 GeV - 3h
1.5 GeV - 3h
16
6
8
10
Wavelength (nm)
12
14
45
16
1 10
30
Spectrum
29
mrad2 mm2 0.1% bw)]
Peak brilliance [Phot./(s# Photons/pulse/0.1%bw
SASE Spectrum @ 4.5 nm – 33m
1 10
1 10
28
1 10
27
1 10
26
5
1 10
14
10
Wavelength (nm)
15
1 GeV
1.25 GeV
1.5 GeV
1 GeV - 3h
1.25 GeV - 3h
1.5 GeV - 3h
1 10
0.1% λ
5/23/2016
# Photons/pulse/0.1%bw
13
1 10
12
1 10
11
1 10
10
5
10
Wavelength (nm)
15
46
Seeding to increase longitudinal
coherence: HHG in
Ar+Monochromator
1
Ar
λ ~ 30 nm
E ~ 0.4 μJ
P ~ 8 MW
δt ~ 50 fs ~ 6 μm
0.5
0
100
50
Monochromator
ηm = 0.08 x 0.5 x 0.25 x δti/δtf
0
50
100
λ ~ 30 nm
Ef =ηmEi~ 0.6 nJ
Pf ~ 3 kW
cδtf ~ 60 μm
X 6 (X8)
UM1
λu = 4.2 cm
K = 3.89
5 UM
48 periods each
λres ~ 30 nm
5/23/2016
UM2 (SPARC)
λu = 2.8 cm
K = 1.51
6 UM
77 periods each
λres ~ 5 nm (3.75 nm)
47
HHG in Ar + monochromator cont.
1st harmonic
90
5.006
5 nm
Energy per pulse
N phot.
Coherence length
Power Spectrum (a.u.)
1st harmonic
Power (a.u.)
Power Spectrum (a.u.)
5 nm
45
0
z (um)
5.008
5.01
5.012
wavelength (nm)
45
90
5.005
5.014
1.665
1.67
wavelength (nm)
5.01
wavelength (nm)
1.675
1.05
1.05
90
5 nm
5/23/2016
45
0
z (um)
45
90
90
Power Spectrum (a.u.)
Phase
5.015
5.02
1st harmonic
3.14
3.14
~ 100 μJ
~ 2x1012
~ 45 μm
45
0
z (um)
3.755
3.756
45
90
3.757
3.758
wavelength (nm)
3.75 nm
Energy per pulse
N phot.
Coherence length
3.759
3.76
3.761
~ 10 μJ
~ 1x1011
~ 30 μm
48
SUMMARY


LINAC upgrade layout proposed w a
preliminary cost estimate
Photoinjector Beam Dynamics studies:
 2 stable w.p. considered
 Jitter sensitivity analysis & optimization
 Microbunching instability study

NEXT:
• Prototypes realization
• Tests at SPARC on techniques and systems for
SPARXINO
• Components and installation
5/23/2016
49