Chapter 12 Three-Phase Circuits
Download
Report
Transcript Chapter 12 Three-Phase Circuits
Chapter 12
Three-Phase Circuits
Power Factor Correction
Medium Voltage Metal
Enclosed Capacitor Banks
A balanced three-phase circuit
Three-Phase Voltages
vaa 2 V cos t
vbb 2 V cos( t 120)
vcc 2 V cos( t 240)
(a) The three windings on a
cylindrical drum used to
obtain three-phase voltages
(b) Balanced three-phase
voltages
Three-Phase Voltages
Generator with six terminals
Three-Phase Balanced Voltages
Vaa V 0
Vbb V 120
Vcc V 240 V 120
Phase sequence or phase rotation is abc
Positive Phase Sequence
neutral terminal
Va V 0
Vc V 120
Vb V 240 V 120
Phase sequence or phase rotation is acb
Negative Phase Sequence
Two Common Methods of Connection
phase voltage
(a) Y-connected sources (b) -connected sources
Phase and Line Voltages
Vab Va Vb
V p 0 V p 120
V p V p ( 0.5 j 0.866)
The line-to-line voltage Vab of
the Y-connected source
3V p 30
Similarly
Vbc 3Vp 90
Vca 3Vp 210
The Y-to-Y Circuit
A four-wire Y-to-Y circuit
The Y-to-Y Circuit (cont.)
Four - wire
Va
Vb
Vc
I aA
, IbB
, and I cC
ZA
ZB
ZC
InN IaA IbB IcC
The average power delivered by the three-phase source
to the three-phase load
P PA PB PC
When ZA = ZB = ZC the load is said to be balanced
Va V 0
Vb V 120
Vc V 120
I aA
, IbB
, and I cC
Z A Z
ZB
Z
ZC
Z
V
V
V
I aA , IbB ( 120), and I cC ( 120)
Z
Z
Z
The Y-to-Y Circuit(cont.)
There is no current in the wire connecting the neutral node
of the source to the neutral node of the load.
InN IaA IbB IcC 0
The average power delivered to the load is
P PA PB PC
V
V
V
V cos( ) V cos( ) V cos( )
Z
Z
Z
V2
3 cos( )
Z
The Y-to-Y Circuit (cont.)
A three-wire Y-to-Y circuit
The Y-to-Y Circuit (cont.)
Three - wire
We need to solve for VNn
Va VNn Vb VNn Vc VNn
0
ZA
ZB
ZC
V 0 VNn V 120 VNn V 120 VNn
ZA
ZB
ZC
Solve for VNn
(V 120) Z AZC V 120Z AZ B V 0Z B ZC
VNn
Z A ZC Z A Z B Z B ZC
Va VNn
Vb VNn
Vc VNn
I aA
, IbB
, and I cC
ZA
ZB
ZC
The Y-to-Y Circuit (cont.)
When the circuit is balanced i.e. ZA = ZB = ZC
(V 120)ZZ V 120ZZ V 0ZZ
VNn
ZZ ZZ ZZ
0
The average power delivered to the load is
P PA PB PC
V2
3 cos( )
Z
The Y-to-Y Circuit (cont.)
Transmission lines
A three-wire Y-to-Y circuit with line impedances
The Y-to-Y Circuit (cont.)
The analysis of balanced Y-Y circuits is simpler than the
analysis of unbalanced Y-Y circuits.
VNn = 0. It is not necessary to solve for VNn .
The line currents have equal magnitudes and
differ in phase by 120 degree.
Equal power is absorbed by each impedance.
Per-phase equivalent circuit
Example 12.4-1 S = ?
Va 1100 Vrms
Vb 110 120 Vrms
Vc 110120 Vrms
Z A 50 j80
Z B j50
ZC 100 j 25
Unbalanced 4-wire
I aA
Va 1100
Z A 50 j80
IbB
Vb 110 120
2.2150 A rms
ZB
j50
I cC
1.16 58 A rms
Vc 110120
1.07 106 A rms
ZC 100 j 25
Example 12.4-1 (cont.)
S A I*aA Va 68 j109 VA
S B I*bB Vb j 242 VA
SC I*cC Vc 114 j 28 VA
The total complex power delivered to the three-phase load
is
S S A S B SC 182 j379 VA
Example 12.4-2 S = ? Balanced 4-wire
Va 1100 Vrms
Z A 50 j80
Vb 110 120 Vrms
Z B 50 j80
Vc 110120 Vrms
ZC 50 j80
I aA
Va 1100
Z A 50 j80
1.16 58 A rms
S A I*aA Va 68 j109 VA
The total complex power delivered to the three-phase load
is
S 3S A 204 j326 VA
Also
IbB 1.16 177 Arms , IcC 1.1662 Arms
S B 68 j109 VA SC
Example 12.4-3 S = ?
Va 1100 Vrms
Vb 110 120 Vrms
Vc 110120 Vrms
Z A 50 j80
Z B j50
ZC 100 j 25
Unbalanced 3-wire
Determine VNn
(110 120) Z AZC 110120Z AZ B 1100Z B ZC
VNn
Z AZC Z AZ B Z B ZC
56 151 Vrms
Va VNn
Vb VNn
Vc VNn
I aA
, IbB
, and I cC
ZA
ZB
ZC
Example 12.4-3 (cont.)
IaA 1.71 48, IbB 2.453, and IcC 1.1979
S A I*aA Va I*aA (I aAZ A ) 146 j 234 VA
S B I*bB Vb I*bB (I bB Z B ) j 94 VA
SC I*cC Vc I*cC (I cC ZC ) 141 j 35 VA
The total complex power delivered to the three-phase load
is
S S A S B SC 287 j364 VA
Example 12.4-4 S = ? Balanced 3-wire
Va 1100 Vrms
Z A 50 j80
Vb 110 120 Vrms
Z B 50 j80
Vc 110120 Vrms
ZC 50 j80
I aA
Va 1100
Z A 50 j80
1.16 58 A rms
S A I*aA Va 68 j109 VA
The total complex power delivered to the three-phase load
is
S 3S A 204 j326 VA
Example 12.4-5 PLoad = ? PLine = ? PSource = ?
Balanced 3-wire
Va
1000
I aA ( )
Z A 50 j (377)(0.045)
per-phase
equivalent circuit
1.894 18.7 A
The phase voltage at the load is
VAN ( ) (40 j(377)(0.04))IaA ( ) 812 V
Example 12.4-5 (cont.)
The power delivered by the source is
Vm I m
Pa
cos(V I )
2
(100)(1.894)
cos(18.7) 89.7 W
2
The power delivered to the load is
I m2
(1.894)2
PA Re( Z A )
40 71.7 W
2
2
The power lost in the line is
I m2
(1.894)2
PaA Re( Z Line )
10 17.9 W
2
2
Line loss 20 %
The -Connected Source and Load
Vab 1200 Vrms
Vbc 120.1 121 Vrms
Vca 120.2121 Vrms
Circulating
current
( Vab Vbc Vca )
I
3.75 A
1
Unacceptable
Total resistance around the loop
Therefore the sources connection is seldom used
in practice.
The -Y and Y- Transformation
Z1Z3
ZA
Z1 Z 2 Z3
ZA
ZB
ZC
Z1Z 2
ZC
Z1 Z 2 Z3
Z AZ B Z B Z C Z AZ C
Z1
ZB
Z3
Z1
Z 2 Z3
ZB
Z1 Z 2 Z3
Z2
Z AZ B Z B ZC Z AZC
Z2
ZA
Z AZ B Z B ZC Z AZC
Z3
ZC
Example
The Y- Circuits
I aA I AB ICA
I bB I BC I AB
I cC ICA I BC
where
I AB
VAB
Z3
I BC
VBC
Z1
ICA
VCA
Z2
The Y- Circuits (cont.)
I aA I AB ICA
I cos j sin I cos( 120) j sin( 120)
3I ( 30)
or
IaA 3 I
I L 3I p
Example 12.6-1 IP = ? IL = ?
220
30 Vrms
3
220
Vb
150 Vrms
3
220
Vc
90 Vrms
3
Va
The -connected load is balanced with Z 1050
VAB Va Vb 2200 Vrms
VBC Vb Vc 220 120 Vrms
VCA Vc Va 220 240 Vrms
The line currents are
I AB
I
BC
ICA
VAB
2250 A rms
Z
VBC
22 70 A rms
Z
VCA
22 190 A rms
Z
IaA I AB ICA 22 320, IbB 22 3 100, IcC 22 3 220
The Balanced Three-Phase Circuits
Y-to- circuit
equivalent Y-to-Y circuit
Z
ZY
3
per-phase equivalent circuit
Example 12.7-1 IP = ?
Va 1100 Vrms
Vb 110 120 Vrms
Vc 110120 Vrms
Z L 10 j5
Z 75 j 225
Z
ZY
25 j 75
3
Va
I aA
1.26 66 A rms
Z L ZY
Example 12.7-1 (cont.)
IbB 1.26 186 Arms and IcC 1.26 54 Arms
The voltages in the per-phase equivalent circuit are
VAN I aAZY 99.65 Vrms
VBN 99.6 115 Vrms
VCN 99.6125 Vrms
The line-to-line voltages are
VAB VAN VBN 17235 Vrms
VBC VBN VCN 172 85 Vrms
I AB
VAB
0.727 36 A rms
Z
I BC
VBC
0.727 156 A rms
Z
VCA VCN VAN 172155 Vrms
ICA
VCA
0.72784 A rms
Z
Instantaneous and Average Power in BTP Circuits
One advantage of three-phase power is the smooth flow of
energy to the load.
vab V cos t , vbc V cos( t 120),
The instantaneous power
and vca V cos( t 240)
2
vab
vbc2 vca2
(1 cos 2 t )
2
p (t )
cos t
R
R
R
2
V2
1 cos 2 t 1 cos 2( t 120) 1 cos 2( t 240)
2R
3V 2 V 2
cos 2 t cos(2 t 240) cos(2 t 480)
2R 2R
0
3V 2
2R
Instantaneous and Average Power in BTP Circuits
The total average power delivered to the balanced
Y-connected load is
IaA I L AI , VAN VP AV
Phase A
3VL I L cos( )
3
3
VL
I L cos( )
3VP I L cos( )
PY 3PA 3VP I L cos( AV AI )
Instantaneous and Average Power in BTP Circuits
The total average power delivered to the balanced
-connected load is
3VP I L cos( )
3
3( 3VP ) L cos( )
I
P 3PAB 3VAB I AB cos( )
Example 12.8-1 P = ?
Va 1100 Vrms
Vb 110 120 Vrms
Vc 110120 Vrms
Z L 10 j5
Z 75 j 225
Va
I aA
1.26 66 A rms
Z L ZY
VAN IaAZY 99.65 Vrms
P 3(99.6)(1.26) cos(5 ( 66)) 122.6 W
Two-Wattmeter Power Measurement
cc = current coil
vc = voltage coil
W1 read
P1 VAB I A cos1
W2 read
P2 VCB I C cos 2
For balanced load with abc phase sequence
1 a 30 and 2 a 30
a is the angle between phase current and phase voltage of phase a
Two-Wattmeter Power Measurement(cont.)
P P1 P2
2VL I L cos cos30
3VL I L cos
To determine the power factor angle
P1 P2 VL I L 2cos cos30
P1 P2 VL I L (2sin sin30)
P1 P2
VL I L 2 cos cos 30
3
P1 P2 VL I L ( 2sin sin 30) tan
P1 P2
tan 3
P1 P2
P1 P2
or tan 3
P1 P2
1
Example 12.9-1 P = ?
Z 1045
line-to-line voltage = 220Vrms
The phase voltage
220
VA
30
3
The line current
VA 220 30
IA
12.7 75 and I B 12.7 195
Z 10 345
P1 VAC I A cos1 2698 W
P2 VBC I B cos 2 723
W
P P1 P2 3421 W
Electrodynamic Wattmeter
Digital Power Meter
pf Meter
VAR Meter
Summary
Three-Phase voltages
The Y-to-Y Circuits
The -Connected Source and Load
The Y-to- Circuits
Balanced Three-Phase Circuits
Instantaneous and Average Power in Bal. 3 Load
Two-Wattmeter Power Measurement