Structure, dynamics and manipulation of colloidal systems in real-space Roel Dullens
Download ReportTranscript Structure, dynamics and manipulation of colloidal systems in real-space Roel Dullens
Structure, dynamics and manipulation of colloidal systems in real-space Roel Dullens Physical and Theoretical Chemistry Laboratory Department of Chemistry University of Oxford Outline Introduction • Colloids in real life and as model systems Crystal-Fluid interface of hard spheres • Core-shell PMMA colloids • 3D single particle imaging Manipulating colloids • Optical tweezers: deforming 2D colloidal crystals • Magnetic colloids: dipolar fluids and ‘explosions’ quarks protons & neutrons 10-15 1 fm atoms & molecules 10-12 1 pm 10-9 1 nm COLLOIDS What are colloids? 10-6 1 μm 10-3 1 mm 1 1m 103 1 km 106 International Union of Pure and Applied Chemistry “The term colloidal refers to a state of subdivision, implying that the molecules or polymolecular particles dispersed in a medium have at least in one direction a dimension roughly between 1 nm and 1 mm.” Colloids in nature: milk Colloids in nature: blood 7 mm Colloids in nature: clay 1 mm Natural and synthetic colloids: latex Colloids as atoms Jean Perrin (1870 – 1942) Albert Einstein (1874 – 1942) Same statistical thermo Similar phase behaviour Colloids as atoms “The same equations have the same solutions.” Richard Feynman (1918-1988) …so what is new? Colloidal model systems 1. Tunable shape 2. Tunable interactions energy Hard Soft repulsive 0 distance Attractive new and fascinating behaviour! 3. Colloids are larger and slower than atoms Outline Introduction • Colloids in real life and as model systems Crystal-Fluid interface of hard spheres • Core-shell PMMA colloids • 3D single particle imaging Manipulating colloids • Optical tweezers: deforming 2D colloidal crystals • Magnetic colloids: dipolar fluids and ‘explosions’ Simplest system: hard spheres Phase diagram* Fluid Fluid + Crystal 0.494 Glass Crystal 0.545 quench 0.58 *Computer Simulations: Alder & Wainwright (1957), Wood & Jacobson (1957) Experimental hard spheres: Colloids Sterically stabilized PMMA colloids in optically matching solvent Fluid 0.494 Fluid + Crystal Crystal 0.545 Pusey and van Megen, Nature, 320, 340 (1986) Glass Crystal-fluid interface Core-shell colloids z x y Confocal microscope 40 x 40 μm2 RPAD, D.G.A.L. Aarts & W.K. Kegel, PRL 97, 228301 (2006) Colloids are seeable and slow Structure and dynamics at single particle level Structure Dynamics Correlations in single images Correlation in subsequent images Crystal-fluid interface z x y Confocal microscope 40 x 40 μm2 40 x 40 x 70 μm3 RPAD, D.G.A.L. Aarts & W.K. Kegel, PRL 97, 228301 (2006) Outline Introduction • Colloids in real life and as model systems Crystal-Fluid interface of hard spheres • Core-shell PMMA colloids • 3D single particle imaging Manipulating colloids • Optical tweezers: deforming 2D colloidal crystals • Magnetic colloids: dipolar fluids and ‘explosions’ Colloidal materials are soft Softness of materials Young’s modulus E: stress F A energy E strain L L volume Young’s modulus E Atomic materials eV Eatom ~ 3 ~ 100 GPa Å Colloidal materials kT Ecolloid ~ B 3 ~ 0.01 Pa mm Colloids are easy to manipulate and deform! Optical tweezers Optical tweezers Optical tweezers Time-sharing laser-beam • Multiple quasi-static traps • Control symmetry, density, … Manipulation: optical tweezers Dynamic optical tweezing • control trap as a function of time 170 x 130 μm2 Example: micro-mechanics Optical tweezers: microscopic deformation Dragging particles through crystals 170 x 130 μm2 V = 0.25 μm/s Displacement from trap Dissipated energy stiffness of crystal 1.2 250 2.5 200 2.0 Utrap (kBT) r = |rimp-rtrap| (mm) 3.0 Ftrap (pN) 1.0 1.5 0.8 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 150 r (mm) 100 1.0 50 0.5 0 0.0 0 100 200 300 time (s) 400 500 600 -3 -2 -1 0 r (mm) 1 2 3 Δrsteady-state = direct measure for dissipated energy (and force) V = 0.25 μm/s Orientational stiffness of 2D crystals θ = 60˚ θ = 30˚ (11)-direction r = |rimp-rtrap| (mm) 2.2 2.0 1.8 1.6 1.4 1.2 θ = 0˚ (10)-direction 1.0 0 5 10 15 20 (degrees) • high symmetry low force (energy) low stiffness • low symmetry high force (energy) high stiffness • variation in U ~ 100 kBT (!!!) 25 30 V = 0.25 μm/s Effect on crystal: Strain-field Determination of strain tensor1 80 ideal 60 real εxx 40 20 -0.05000 -0.04500 -0.04000 0 Bond-vectors: ri Ri y (mm) -0.03500 -20 -0.03000 -40 -0.02500 -0.02000 -60 -0.01500 -80 -0.01000 -125 -100 -75 -50 -25 0 25 50 75 100 125 150 -0.005000 0 0.005000 80 0.01000 60 0.01500 εyy 40 0.02000 0.02500 Lattice spacing g(r) 20 0 0.03500 Orientation angle distribution -20 0.04000 0.03000 0.04500 -40 0.05000 -60 Determine strain tensor ε by minimizing mean-square diff. r i 1 i Ri -80 -125 -100 -75 -50 -25 0 25 x (mm) 50 75 100 125 x-profiles of εxx and εyy Falk and Langer, PRE 57, 7192 (1998) & Schall et al., Nature 440, 319 (2006) 150 V = 0.25 μm/s x-profiles of εxx and εyy 80 εxx 40 20 expansion 0.02 60 -0.05000 0.01 -0.04500 -0.04000 0 0.00 -0.03500 -20 y (mm) -40 -60 -80 -125 -100 -75 -50 -25 0 25 50 75 100 125 150 strain -0.03000 -0.02500 -0.01 -0.02000 -0.01500 -0.01000 -0.02 xx compression -0.005000 0 yy -0.03 0.005000 80 0.01000 60 0.01500 εyy 40 20 -0.04 0.02000 0.02500 0.03000 -0.05 0 0.03500 -20 0.04000 0.04500 -40 0 20 40 60 80 0.05000 x' (mm) -60 -80 -125 -100 -75 -50 -25 0 25 x (mm) 50 75 100 125 150 Angular dependence of εxx and εyy? 100 120 140 V = 0.25 μm/s Angle-dependent strain -0.020 0.02 strain yy strain xx -0.025 -0.030 -0.035 -0.040 0.01 0.00 -0.045 -0.050 -0.01 -0.055 0 5 10 15 20 25 30 (degrees) • high symmetry high strain (εxx) 0 5 10 15 25 30 (degrees) • increasing angle increasing strain (εyy) • low symmetry low strain (εxx) θ = 0˚ 20 θ = 30˚ Outline Introduction • Colloids in real life and as model systems Crystal-Fluid interface of hard spheres • Core-shell PMMA colloids • 3D single particle imaging Manipulating colloids • Optical tweezers: deforming 2D colloidal crystals • Magnetic colloids: dipolar fluids and ‘explosions’ Magneto-rheological fluids Paramagnetic colloids in external magnetic field repulsion Structure formation m0 m2 U 4 r 3 B • band- and chains • formation kinetics attraction B 2m0 m U 4 r 3 2 B m0: permeability constant m: magnetic moment Tune interactions using external magnetic field 170 x 130 μm2 Repulsive quench: explosions B partice-trajectories highly non-equilibrium (non-diffusive, driven colloids) Zigzag-instability in lines Experiment simulation Arthur Straube and Ard Louis Rotating fields ... Summary • Colloidal systems, confocal microscopy and optical tweezers are a very nice playground! • Structure of hard sphere crystal-fluid interface • Orientational stiffness of 2D colloidal crystals: high symmetry low force high strain low symmetry high force low strain • Magnetic colloids: tunable interaction potential great model system for self-assembly Acknowledgements Utrecht: Volkert de Villeneuve Willem Kegel Andrei Petukhov Maurice Mourad Maria Claesson Henk Lekkerkerker Oxford: Dirk Aarts Stuttgart: Clemens Bechinger Stefan Bleil Christopher Hertlein Jens Harting Rudolf Weeber The end 2D colloidal model system • small melamine spheres: σs = 2.9 µm • large polystyrene spheres: σb = 15.5 µm • screening of charges: (almost) hard sphere interactions Effective size-ratio ≈ 4 Example: micro-mechanics Dragging a large probe particle through a 2D crystal Variables θ = 30˚ θ = 0˚ • orientation • speed Characterization of 2D crystals snapshot Voronoi construction Np ≈ 1890, 170 x 130 μm2 170 x 130 μm2 Nearly defect-free 2D crystal Characterization II radial distribution function angle distribution 9 8 9 8 7 7 g(r) g(r) 5 p() (a.u.) 6 6 5 4 3 4 2 1 3 0 2 4 6 8 2 10 12 r (mm) 14 16 18 20 1 0 0 20 40 60 80 100 120 -180 -120 -60 0 60 120 r (mm) (degrees) • sharp well-defined peaks • 6 peaks single crystal • Lattice-spacing: 3.5 μm • Crystal orientation: 18˚ 180 V = 0.25 μm/s Velocity of probe particle 4.5 0.30 0.25 Vx Vy II 0.15 I 0.10 P(v) (a.u.) V (mm/s) 0.20 III 4.0 Vx 3.5 Vy 3.0 2.5 2.0 1.5 0.05 1.0 0.00 0.5 0 200 400 600 800 time (s) 1000 1200 0.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 V (mm/s) Three regimes • indentation (I) • steady-state (II) • relaxation (III) Gaussian P(vx) and P(vy) 0.6 0.8 Tuning buoyancy of particles “close to and away from equilibrium” Increasing mass non-density-matching (non-equilibrium) density difference 4 4 3 3 3 2 1 0 -20 d3ρ(z) 4 d3ρ(z) d3ρ(z) density-matching (equilibrium) 2 1 -10 0 z’/d 10 20 0 -20 2 1 -10 0 10 20 0 -20 -10 z’/d 0 z’/d Interfacial broadening! What’s happening? Local bond order algorithm: identify crystallites 10 20 Visualisation of crystal-fluid interface Particles that are part of crystalline cluster A Solvent 1 B Solvent 2 C Solvent 3 • Crystal nulceation and growth increasing roughness of interface • Dynamic broadening of interface away from equilibrium Core-shell PMMA colloids X-linked PMMA 11.5 x 11.5 mm2 PHS ~ 1 μm X-linked PMMARAS core • Rcore = 200 nm (fluorescent) • Rtotal = 650 nm, = ~ 4 % • Density and refractive index matched • Hard sphere interactions RPAD et. al., Langmuir 19, 5963 (2003) & Langmuir, 20, 658 (2004) Velocity dependence: defect structures V = 0.05 μm/s V = 0.10 μm/s V = 0.25 μm/s V = 0.40 μm/s V = 1.00 μm/s V = 4.00 μm/s V = 8.00 μm/s V = 16.0 μm/s Elastic increasing Plastic txtal < tdrag velocity txtal > tdrag 500 60 400 55 W_|_ (mm) W// (au) “Defect lengths” 300 200 100 50 45 40 35 0 30 0 5 10 15 20 25 30 35 V (mm/s) Further work: • relation defect structure and strain • correlation with dissipated energy 0.1 1 V (mm/s) 10 txtal ≈ tdrag V = 0.25 μm/s Displacement vs. strain probe particle r = |rimp-rtrap| (mm) 2.2 2.0 1.8 1.6 1.4 2.0 1.2 0 5 10 15 20 (degrees) 25 30 |R| 1.0 1.5 -0.020 strain xx -0.025 1.0 0.020 -0.030 0.025 -0.035 -0.040 -0.045 -0.050 host crystal -0.055 0 5 10 15 20 (degrees) 25 30 0.030 0.035 |xx| 0.040 0.045 0.050 Number density profile 4 (almost) density matching solvent d3ρ(z) 3 2 (almost) stationary interface: equilibrium interface 1 0 -20 -10 0 10 20 z’/d Interfacial width*: W10-90(d) = 8 *10-90 width W10-90: Davidchack and Laird, JCP (108), 9452 – 9462 (1998) Cornerstones of colloids I. Chemistry size, shape, interactions, fluorescence I III III. Manipulation light forces, optical tweezers, magnetic and electric fields II II. Time and length scales microscopy, scattering, dynamics