Multifunction Phased Array Radar (MPAR) Jeffrey Herd Mark Weber

Download Report

Transcript Multifunction Phased Array Radar (MPAR) Jeffrey Herd Mark Weber

Multifunction Phased Array
Radar (MPAR)
Jeffrey Herd
Mark Weber
MIT Lincoln Laboratory
20 March 2007
MIT Lincoln Laboratory
PAR Study-1
JSH 3/28/2005
Outline
•
Introduction to MPAR Concept
•
MPAR Pre-Prototype
• Development Roadmap
•
Summary
MIT Lincoln Laboratory
PAR Study-2
JSH 3/28/2005
National Air Surveillance
Infrastructure
Future
Today
ASR-8
ARSR-1/2
NEXRAD
ASR-9
ASR-11
ARSR-3
ARSR-4
TDWR
• Aging mechanically scanned
• State-of-the-art active phased array
•
•
•
radars
8 unique types for 4 different
missions
Over 500 total with redundant
spatial coverage
•
radars
1 type for all missions: Multifunction
Phased Array Radar (MPAR)
Efficient coverage and support
infrastructure by eliminating
redundancy
MIT Lincoln Laboratory
PAR Study-3
JSH 3/28/2005
Current Capabilities
Maximum Detection
Range
Coverage
Angular
Resolution
Waveform
Scan
Period
Aircraft
1 m2
Weather
0 dBZ
Range
Altitude
Az.
El.
Terminal Area
Aircraft
Surveillance
(ASR-9/11)
60 nmi
12 nmi
60 nmi
20,000'
1.4
5o
>18 pulses
PRI ~0.001
sec
5 sec
En Route
Aircraft
Surveillance
(ARSR-4)
205 nmi
5 nmi
250
nmi
60,000'
1.4
2.0
>10 pulses
PRI ~0.001
sec
12 sec
180 sec
>240 sec
Terminal Area
Weather
(TDWR)
195 nmi
100 nmi
60 nmi
20,000'
1
0.5
~50 pulses
PRI ~0.001
sec
En Route
Weather
(NEXRAD)
210 nmi
85 nmi
250
nmi
50,000'
1
1
~50 pulses
PRI ~0.001
sec
MIT Lincoln Laboratory
PAR Study-4
JSH 3/28/2005
Concept MPAR Parameters
•
Diameter:
8m
TR elements/face: 20,000
Dual polarization
Beamwidth:
0.7 (broadside)
1.0 (@ 45)
Gain:
> 46 dB
Aircraft Surveillance
•
Weather
Surveillance
Non cooperative
target tracking and
characterization
Active Array (planar, 4 faces)
Transmit/Receive Modules
Wavelength:
Bandwidth/channel:
Frequency channels:
Pulse length:
Peak power/element:
•
10 cm (2.7–2.9 GHz)
1 MHz
3
1–100 s
1–10 W
Architecture
Overlapped subarray
Number of subarrays:
300–400
Maximum concurrent beams: ~160
MIT Lincoln Laboratory
PAR Study-5
JSH 3/28/2005
CONUS Coverage
Legacy Air Surveillance Coverage
Multifunction Radar Coverage
510 Total Radars, 7 unique types
334 Total Radars, 1 type*
35% reduction
1000ft AGL
5000ft AGL
* Gapfiller and full aperture antenna assemblies to save cost
MIT Lincoln Laboratory
PAR Study-6
JSH 3/28/2005
Preliminary Life Cycle Cost Comparison
$2.4B
•
Assumptions:
–
–
–
–
–
510 legacy @ $5-10M ea
167 full-size MPAR @ $15M ea
167 terminal-area MPAR @ $5M ea
Legacy O&M = $0.5M per year
MPAR O&M = $0.3M per year
• Replacement of legacy systems with MPAR on as-needed
•
basis saves ~ $2.4B over 20-year period
Majority of savings comes from reduced O&M costs
MIT Lincoln Laboratory
PAR Study-7
JSH 3/28/2005
Tx Peak Power vs. Pulse Compression
• Sensitivity ~ PpNG2t
~ PpN3t
• Module cost ~ Pp
 Keep Pp small,
increase N and
lengthen t as needed
(with pulse
compression for
range resolution)
• But long t requires
short “fill” pulse for
close-range coverage:
crucial for terminalarea surveillance
Pp: Peak power per element
MPAR Weather Sensitivity
1 W / element
Compression ratio = 100
TDWR
STC On
N: Number of elements per face
10 W / element
Compression ratio = 10
For 46-dB MPAR antenna gain
G: Antenna gain
t: Pulse length
MIT Lincoln Laboratory
PAR Study-8
JSH 3/28/2005
Fill-Pulse and Long-Pulse Sensitivity
@ 230 km for long pulse
NEXRAD
Assumes 46-dB antenna gain
-15 dBZ
@ end of fill-pulse range
>
~ 2W per element with 30 s long-pulse and 1 s fill-pulse
lengths meets sensitivity requirements
MIT Lincoln Laboratory
PAR Study-9
JSH 3/28/2005
Noncooperative Target Surveillance:
3D Tracking
Height Discrimination
Target ID
Engine Harmonics
300
Velocity (m/s)
MPAR with
monopulse
200
Fuselage
100
0
100
ATCRBS reply quantization
200
Mode S reply quantization
300
Clutter
0
10
20
30
40
50
60
70
80
90
Relative Range (m)
•
Current civilian ATC primary radars do not
measure target altitude
–
•
Cooperative (beacon) response is used
Proposed ADS-B ATC surveillance is
entirely cooperative
–
MPAR could be used for 3D
detection/tracking of noncooperative
targets, and back up & verification for
ADS-B
•
•
•
High PRF and full bandwidth for target
characterization
Target ID mode has limited range swath
and cannot operate concurrently with
other modes
Would be used in brief “point and ID”
bursts based on external cues
MIT Lincoln Laboratory
PAR Study-10
JSH 3/28/2005
Outline
•
Introduction to MPAR Concept
•
MPAR Pre-Prototype
• Development Roadmap
•
Summary
MIT Lincoln Laboratory
PAR Study-11
JSH 3/28/2005
Notional MPAR Pre-Prototype System
4.2 m
16
Subarray
Phase
Centers
4.2 m
Subarray
• Pre-Prototype radar demonstrates
two simultaneous modes
–
–
–
Aircraft and weather surveillance
Beamwidth: ~ 2º az by 2º el (broadside)
Two independent beam clusters
Electronic steering ±45º az, ±40º el
Up to 8 beams in each 1D cluster
–
Provides terminal area coverage to @140 km
(8 W per element, 20 sec pulse )
= element
= brick
= subarray center
4544 elements
284 bricks
16 subarrays
8 X 1 beam cluster
MIT Lincoln Laboratory
PAR Study-12
JSH 3/28/2005
MPAR Pre-Prototype Systems Analysis
• Trade off between HPA power, pulse compression ratio, and
•
minimum detectable reflectivity
Desired performance achieved with 8W and 20:1 pulse
compression
MIT Lincoln Laboratory
PAR Study-13
JSH 3/28/2005
Multiple Beam Cluster Array Architecture
Freq 2
Freq 1
Beam Clusters
Switched
Dual Pol
Radiators
LNA
HPA
Dual-Mode
T/R Modules
f1
f2
Channelizer
f1
f2
Channelizer
1
Channelizer
M
2
Overlapped Subarray Beamformer
1
Dual Mode Transceivers
f2
Beamsteering
Controller
Channelizer
Analog Beamformer
LNA
HPA
Channelizer
Channelizer
f1
LNA
HPA
N
Digital Receiver
analog
Digital Receiver
digital
Digital Beamformer
Radar Signal Processors
Real Time Beamformer
Back End Processor
MIT Lincoln Laboratory
PAR Study-14
JSH 3/28/2005
‘Brick’ Array Architecture
Modular Brick
T/R Module Card
T/R Modules
Standard Eurocard
Format
• Brick approach provides low cost, scalable architecture
• Open frame concept for easy access
– Forced air cooling
• Chassis modularity
– Flexible brick arrangements
MIT Lincoln Laboratory
PAR Study-15
JSH 3/28/2005
Transient Thermal Analysis
HPA’s
Thermal Modelling
Forced Air
Transient Response
Temperature, C
Physical Geometry
T/R Card
85 ° C
Time, µsec
• Transient thermal analysis
•
– 2W, 4W, 8W, 10W peak transmit amplifiers
– Varying pulse lengths
Includes critical chip level details
– Thermal conductivities of device and interfaces
• 8W peak power with 20 µsec pulse is thermally acceptable
MIT Lincoln Laboratory
PAR Study-16
JSH 3/28/2005
Dual Mode T/R Module
To Element
H-Pol Feed
To Element
V-Pol Feed
Blue = Custom Parts
Red = Off the Shelf parts
• T/R Module design supports two independent beam clusters
• ‘Pick and place’ surface mount parts reduce packaging /
•
assembly costs
Custom RF designs for application-specific components
MIT Lincoln Laboratory
PAR Study-17
JSH 3/28/2005
8W T/R Module Parts Costs
Item
Quantity
HPA
2
Bias
1
SP2T
3
LNA
1
BPF
1
Diplx
1
Vect Mod 3
Driver
1
Load
1
Board
1
Unit Cost
$23.00
$15.00
$4.00
$1.69
$3.00
v
$1.50
$2.14
$2.50
$2.00
$25.00
Total Cost
$46.00
$15.00
$12.00
$1.69
$3.00
$1.50
$6.42
$2.50
$2.00
$25.00
Total = $115.00
• Parts costs driven by HPA chips and PC board fabrication
• Packaging / test costs not included
• Current HPA chip costs are nearly linear with RF power
MIT Lincoln Laboratory
PAR Study-18
JSH 3/28/2005
T/R Module Components
COTS Evaluation Boards
Custom RF Components
LNA
Diplexer
Vector Modulator
HPA
Switch (T/R and Pol)
Bandpass Filter PC Board
Combline Filter
• T/R module utilizes COTS and custom components
– Use custom parts only when it reduces cost, or if not
available as COTS part
MIT Lincoln Laboratory
PAR Study-19
JSH 3/28/2005
T/R Module Status
Action
Status
Remarks
Select COTS components

Order COTS evaluation parts

Design custom components

Layout custom boards

Fabricate custom parts

Delivery late March
Test COTS evaluation parts

Waiting for several parts
Test custom parts
Waiting for board fab
Assemble connectorized module
Test fully assembled module
MIT Lincoln Laboratory
PAR Study-20
JSH 3/28/2005
Overlapped Subarray Beamformer
Overlapped Subarray Architecture
Passive Beamformer
Layout
Radiating
Element
Weighted
1:3 Divider
A1
A2
A3
A1
A2
A2
A3
A1
A2
A1
A2
A3
A1
A2
v
Weighted
1:4 Combiner
Weighted
1:3 Combiner
A1
Subarray
Output
Subarray
Output
Subarray
Output
• Overlapped subarray enables multiple beam clusters
• Tradeoff between analog and digital complexity
• Prototype X band overlapped subarray successfully
demonstrated under MIT LL IR&D
– S band version currently in fabrication
MIT Lincoln Laboratory
PAR Study-21
JSH 3/28/2005
Overlapped Subarray Beamformer on
RFIC Chip
RFIC CMOS Beamformer Chip
Measured RFIC Beamformer
Pattern
Ideal
Measured
12 Element X band Subarray
• RFIC beamformer reduces cost, size and weight
• Programmable weights enable optimized beam patterns
•
and advanced calibration
Prototype X band RFIC demonstrated under MIT LL IR&D
MIT Lincoln Laboratory
PAR Study-22
JSH 3/28/2005
Dual Mode Receiver
Dual Mode Receiver Architecture
Bench Test Dual Mode Receiver
v
• Parts evaluation confirms discreet component performance
– SFDR = 70 dB, NF = 5.3 dB, OIP3=34 dBm
– Parts costs = $225
• EMI modeling and testing of surface mount boards is critical
MIT Lincoln Laboratory
PAR Study-23
JSH 3/28/2005
Digital Subarray Beamformer
Digital Beamformer Architecture
8 Digital Beam Cluster
v
• Processing simulation tool developed for Pre-Prototype MPAR
– Identified critical kernels
• 16 channel FPGA testbed to test and evaluate kernel designs
MIT Lincoln Laboratory
PAR Study-24
JSH 3/28/2005
Preliminary Parts Cost Estimates
Equivalent Cost per Element - Parts Only
Component
Pre-Prototype
Full Scale MPAR
Antenna Element
$1.25
$1.25
T/R Module
$115.00*
$40.00**
Power, Timing and Control
$18.00
$18.00
Digital Transceiver
$12.50
$6.25
Analog Beamformer
$63.00
$15.00
Digital Beamformer
$18.00
$8.00
Mechanical/Packaging
$105.00
$25.00
RF Interconnects
$123.00***
$40.00****
$455.75
$153.50
Totals:
* Assumes 8W module incl RF board with sequential polarization
** Assumes 2W module incl RF board with sequential polarization
*** Assumes standard beamformer in azimuth
**** Assumes hybrid tile/brick architecture
MIT Lincoln Laboratory
PAR Study-25
JSH 3/28/2005
Outline
•
Introduction to MPAR Concept
•
MPAR Pre-Prototype
•
Development Roadmap
•
Summary
MIT Lincoln Laboratory
PAR Study-26
JSH 3/28/2005
Notional MPAR Pre-Prototype
Development Schedule
Year 1
Year 2
PDR
Year 4
Testing CDR
CDR
Concept Development,
Design, and Subsystem
Prototyping
Brick
Year 3
System
Fabrication and
Assembly
Subarray
Array
Experimental Testing
and Evaluation
Data Collection
Analog and Digital Hardware:
• 16 Element Brick
• Transceiver
• 80 Element Subarray
• Digital Beamformer DBF)
• 4544 Element Array
• 16 Channel DBF
• Collect Multimode
Data
• System Simulation
• Test Planning
• Process Data
• Report Results
Systems Analysis & Signal Processing:
• Waveform Design
• Systems Analysis
• Algorithm Dev
• System Simulation
MIT Lincoln Laboratory
PAR Study-27
JSH 3/28/2005
Summary
•
•
•
Key MPAR features
–
–
–
–
–
–
–
–
Lower O&M costs
Scalable
Multifrequency
Dual polarization
Digital beamforming (multiple receive beam clusters)
Adaptive control
Low module peak power
Auxiliary mode functions
MPAR Pre-Prototype Technology Demonstration Program
–
–
–
Shows path to ultra-low cost implementations
Provides a means to develop and test MPAR concept
Solidifies key technical requirements
Critical demos provide early performance and cost data
–
–
–
–
–
Dual mode T/R module
Overlapped subarray beamformer
Dual mode receiver
Digital beamformer
Thermal management
MIT Lincoln Laboratory
PAR Study-28
JSH 3/28/2005