Accelerator Issues and Design LCLS Design of Compression and Acceleration Systems Technical Challenges

Download Report

Transcript Accelerator Issues and Design LCLS Design of Compression and Acceleration Systems Technical Challenges

Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Accelerator Issues and Design
Paul Emma, SLAC
Dec. 12, 2003
Design of Compression and Acceleration Systems
Technical Challenges
Full System Simulations
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
LCLS
Paul Emma, SLAC
[email protected]
‘
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
‘Slice’ versus ‘Projected’ Emittance
For a collider…
collision integrates over bunch length — ‘projected’ emittance is important
For an FEL… e- slips back w.r.t. photons by lr (= 1.5 Å) per period
lu
…FEL integrates over slippage length:
‘slice’ emittance is important
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
lr
Nlr  0.5 mm
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
SASE X-ray FEL is very sensitive to electron ‘slice’ emittance
eN = 1.2 mm
eN = 2.1 mm
P  10 GW
P  0.1 GW
lr = 1.5 Å
courtesy S. Reiche
Instead of mild luminosity loss, power nearly switches OFF. However,
longer wavelength, such as 15 Å (4.5 GeV), is much easier (eN  6 mm).
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Nominal System Design
1.5-Å SASE FEL Linac:
Requirements
Acceleration to 14.1 GeV (~3 GeV min.)
Bunch compression to 3.4 kA
Emittance preservation (<20% ‘slice’ of 1-mm-mrad)
Final energy spread (0.01% ‘slice’, <0.1% ‘projected’)
Minimal sensitivity to system ‘jitter’ (charge, phase, voltage, ...)
Diagnostics integrated into optics
Flexible operations (1.5 Å →15 Å, low-charge, chirp, etc.)
use 2 compressors, 3 linacs
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Nominal System Design
Constraints
Use existing SLAC linac compatible with PEP-II operation
Undulator located beyond research yard
1 km
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
LCLS versus SLC
LCLS Advantages
Shorter linac (1 km < 3 km)
Shorter bunch in linac (1 mm → 0.2 mm → 0.02 mm)
Lower charge (1 nC < 7 nC)
‘Slice’ emittance important, not projected
No positrons, no sextupoles, no rolls, no DR’s, no RTL’s, no arcs
Round beams (no x-y coupling issues)
Disadvantages
Lower initial linac energy (135 MeV < 1.2 GeV)
Smaller emittance (1/1 mm < 4/40 mm)
Emittance more critical (>2 mm kills FEL power)
Tighter RF, charge, & timing jitter tol’s (~0.1 deg)
CSR is new issue
RF gun less stable platform than damping ring
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Design Strategy
Design longitudinal optics first
Set proper compression in two stages
Minimize final energy spread
Minimize Ipk and Ef sensitivity to gun charge and timing jitter
Design transverse optics second
Minimize transverse wakefields, CSR, and chromatic effects
Build in emittance, energy spread, bunch-length diagnostics
Track entire system
Iterate design
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Linac Coherent Light Source
Nominal LCLS Linac Parameters for 1.5-Å FEL
Single bunch, 1-nC charge, 1.2-mm slice emittance, 120-Hz repetition rate…
6 MeV
z  0.83 mm
  0.05 %
250 MeV
z  0.19 mm
  1.6 %
Linac-X
L =0.6 m
rf= -160
4.54 GeV
z  0.022 mm
  0.71 %
135 MeV
z  0.83 mm
  0.10 %
rf
gun
Linac-1
L 9 m
rf  -25°
Linac-0
L =6 m
...existing linac
21-1b
21-1d
DL-1
L 12 m
R56 0
X
Linac-2
L 330 m
rf  -41°
Linac-3
L 550 m
rf  -10°
21-3b
24-6d
25-1a
30-8c
BC-1
L 6 m
R56 -39 mm
SLAC linac tunnel
BC-2
L 22 m
R56 -25 mm
14.1 GeV
z  0.022 mm
  0.01 %
undulator
L =125 m
LTU
L =275 m
R56  0
research yard
(RF phase: frf = 0 at accelerating crest)
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
RMS Bunch Length and Energy Spread
sector-21
sector-25
sector-30
FFTB++

z
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
after L2
energy
profile
phase
space
time
profile
after DL1
z = 830 mm
after L1
z = 190 mm
after BC2
z = 830 mm
after X-RF
z = 23 mm
after L3
z = 830 mm
after BC1
z = 23 mm
at und.
z = 190 mm
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
FINAL
z = 23 mm
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
X-band RF used to Linearize Compression (f = 11.424 GHz)
S-band RF curvature and 2nd-order momentum
compaction cause sharp peak current spike
X-band RF at decelerating phase corrects 2ndorder and allows unchanged z-distribution
lx = ls/4
1  -40°
Slope
linearized
x = p
avoid!

1 ls2T566
E0 1 - 2
1 -  z  z0
3
R56
 2p

eVx =
 ls lx 2 - 1
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design

2
 - Ei

0.6-m section, 19 MV
available at SLAC
(200-mm alignment)
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Transverse Wakefields and Component Misalignments
Choose b-phase adv/cell for each linac to minimize emittance dilution:
L2 phase adv/cell optimized
L3 phase adv/cell optimized
z = 195 mm
z = 22 mm
x
also misaligned
quads/BPMs generate
dispersion  De
wakes
on
wakes
on
wakes
off
wakes off
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Transverse Optics from Cathode to e- Dump
LCLS MAD Deck 
Cathode to e- Dump
(2200 elements)
Dyx,y  75º
Dyx,y  30º
Thanks to M. Woodley
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
RMS Transverse Beam Sizes from Cathode to e- Dump
4.0 mm
(BC1)
2.6 mm
(BC2)
1 mm
100 mm
undulator
10 mm
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Alignment and Roll Tolerances (most > 1 mm, > 1 deg)
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Linac RF Section Modifications
If modulators on 20-6, -7, and -8 used for injector, lose another 670 MeV (1.56 GeV total)
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Injector to Linac Interface
courtesy L. Bentson
“Linac” Responsibility
Starts Here (21-1b)
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Linac-1 Through BC1
21-1b
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
21-1c
21-1d
21-3b
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
BC2 Area
24-6d
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
25-1a
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Moveable Chicanes (BC1 shown)
BPM critical for energy feedback (20 mm resolution)
collimator
BPM
offset: 17 to 30 cm
(24 cm nominal)
quadrupole
screen
3 cm contraction
collimator
BPM
screen
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Linac Coherent Light Source
Field quality requirement too tight with fixed chicane...
 b2 x 2 

B y = b0 1 
2
 b0 r 
45 mm
Also needed:
•
•
•
•
80 mm
12 mm
BPM res. 20 mm
BPM linearity
profile monitor
collimator
x
 requires: |b2/b0| < 0.002% @ r = 2 cm
(moveable chicane requires 0.070%)
SPPS dipoles: |b2/b0| < 0.010% @ 2 cm (just barely met)
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Future Multiple Undulators
+4º
+2º
N
S
-2º
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Linac-To-Undulator (LTU)
vertical bends
energy centroid & spread meas.
(310-5 & 10-4) + collimation
4 e-wires,
6 collimators
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
•
•
•
•
•
•
•
vertical bend 4.7 mrad
horizontal jog 1.25 m
energy diagnostics
emittance diagnostics
collimators
CSR cancellation
branch points for
future undulators
• spontaneous
undulator possible
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Collimation for Undulator Protection
CE1
Dx
mm
5.0
Dy
mm
-
CE2
5.0
-
CX1
2.0
-
CY1
-
2.0
CX2
2.0
-
CY2
-
2.0
Coll.
2.5 mm
well shadowed
in x, y, and E
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Electron Dump
x-rays →
quads
soft
bend
permanent
powered vert. bends
vert. bends
hy
quad
by
screen (E/E = 10-5  5 mm)
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Specification Sheets on Every New Magnet
BX01 DL1 dipole:
• z-location
• field
• current
• trim info.
• alignment tol.’s
• length
• max/min strength
• etc...
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Technical Challenges
Coherent Synchrotron Radiation in Bends
projected emittance growth
micro-bunching instability (+ LSC — see Z. Huang talk)
Emittance Preservation in
Linacs
transverse wakefields
misalignments & chromaticity
Machine Stability
gun and rf system jitter
energy and bunch length feedback
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
LCLS
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Coherent Synchrotron Radiation
coherent power
N  6109
~l-1/3
incoherent power
z
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
vacuum
chamber
cutoff
Paul Emma, SLAC
[email protected]
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Linac Coherent Light Source
Coherent Synchrotron Radiation (CSR)
Powerful radiation generates energy spread in bends
Induced energy spread breaks achromatic system
Causes bend-plane emittance growth (short bunch is
worse)
coherent radiation for l > z
z
bend-plane emittance growth
l
L0
e–
s
DE/E = 0
Dx

DE/E < 0
R
overtaking length: L0  (24zR2)1/3
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Dx = R16(s)DE/E
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Coherent Synchrotron Radiation (CSR) in SPPS
Chicane
OFF
gex = 27.6  0.6 mm
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Chicane
ON
gex = 34.2  0.7 mm
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Coherent Synchrotron Radiation (CSR) in SPPS
Bend-plane
emittance is
consistent with
calculations and
sets upper limit
on CSR effect
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
CSR Micro-bunching*
CSR amplifies small
modulations on bunch
current  Successive
bend-systems cause
micro-bunching 
Growth of slice-energy
spread & emittance.
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
S. Heifets, S. Krinsky, G. Stupakov,
SLAC-PUB-9165, March 2002
without
heater
  310-6
avoid!
230 fsec
Add slice energy
spread to Landau
damp instability.
energy spread
damps bunching
  310-5
‘Laser-Heater’
see Z. Huang talk
* First observed by M. Borland (ANL) in LCLS Elegant tracking
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Misalignments, Steering, and Emittance Correction
trajectory after steering
BPM, quad, and RF
misalignments: (each at
300 mm rms)...
then steered in Elegant
gex  5 mm
gey  2 mm
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Emittance Correction with Trajectory ‘Bumps’
steering coils
100 seeds
De/e  15%
gex  1.02 mm
gey  1.09 mm
Thanks to M. Borland (ANL/APS)
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Jitter Budget (<1 minute time-scale)
measured RF performance
klystron phase rms  0.07°
(20 sec)
X-band
X-
klystron ampl. rms  0.06%
(60 sec)
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Start-to-End Tracking Simulations
Track entire machine to evaluate beam brightness &
FEL
Parmela
space-charge
Elegant
Genesis
compression, wakes, CSR, …
SASE FEL with wakes
Track machine many times with jitter to test stability
budget (M. Borland, ANL)
LCLS
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Linac Coherent Light Source
Sliced e- Beam to Evaluate FEL (Dz  0.7 mm)
After full system tracking
gex
(also studied by S. Reiche)
gey
z  12  b 0g - 2 0  g 0 b   1
mismatch amplitude variation
zx

2
 2
2
 x   x x  xb x  y  y y  yb y
R4  

b
e
b ye y
x x

2 1 2

zy


slice 4D centroid osc. amplitude
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Lg < 4 m
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Machine Stability Simulations
Track LCLS 230 times with Parmela Elegant
Genesis
Include wakes, CSR, etc. + jitter budget (M. Borland,
ANL) Lg
Ipk
gex
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Pout
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Emittance and Energy Spread Diagnostics*
5 energy spread meas. stations (optimized for small bx)
5 emittance meas. stations designed into optics (Dyx,y)
slice measurements possible with transverse RF (L0 & L3)
3 prof. mon.’s
(Dyx,y = 60°)
rf
gun
gex,y
...existing linac
L1
E
* see also P. Krejcik talk
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
gex,y
gex,y
gex,y
L2
X
E
L3
E
gex,y
E
Paul Emma, SLAC
[email protected]
E
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Transverse RF deflector as diagnostic*
e-
RF
‘streak’
V(t)
x
S-band
long.
phase
space
230 fsec
z
y = kt [mm]
V0 = 0
LCLS
simulation
Built & used at
SLAC in 1960’s
* see P. Krejcik talk
l
Es
 z  rf
2p eV0 sin Dy cos 

2
y
-  y20
V0 = 20 MV

x = hDE/E [mm]
bd bs
meas. bunch length & slice emittance
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
meas. longitudinal phase space
Paul Emma, SLAC
[email protected]
Linac Coherent Light Source
Stanford Synchrotron Radiation Laboratory
Stanford Linear Accelerator Center
Summary
Linac design optimized for nominal 1.5-Å operation
Design is flexible to accommodate 15-Å, low-charge, &
chirp
CSR growth of projected emittance – not slice
Much experience on SLAC linac with wakefield control
Beam diagnostics built into design
Full system tracking to…
Evaluate e- brightness preservation,
Calculate SASE gain,
Simulate pulse-to-pulse stability.
LCLS
Full tracking with errors shows FEL saturation at 1.5 Å,
but a very challenging machine!
LCLS Internal Review, Dec. 12, 2003
Accelerator Issues and Design
Paul Emma, SLAC
[email protected]