Chapter 4 Electrochemical kinetics at electrode / solution interface and electrochemical overpotential

Download Report

Transcript Chapter 4 Electrochemical kinetics at electrode / solution interface and electrochemical overpotential

Chapter 4
Electrochemical kinetics at electrode / solution
interface and electrochemical overpotential
Effect of potential on electrode reaction
1. Thermodynamic aspect
If electrode reaction is fast and electrochemical
equilibrium remains, i.e., Nernst equation is applicable.
Different potential corresponds to different surface
concentration.
2. Kinetic aspect
If electrode reaction is slow and electrochemical
equilibrium is broken. Different potential corresponds
to different activation energy.
4.1 Effect of potential on activation energy
4.1.1 basic concepts
For Elementary unimolecular
process
A
kf
kb
B
rf  k f c A
Rate expressions
rb  kb cB
rnet  rf  rb  k f c A  kb cB
rnet  0;
kb (cB ) eq  k f (c A ) eq
At equilibrium
K
kf
kb

(cB ) eq
(c A )eq
Exchange rate of reaction
Some important empirical formula:
Arrhenius equation
k  Ae

Ea
RT
According to Transition State Theory:
kT
k 
e
h
G 

RT
Corresponding to steric factor
in SCT
For electrode reactions
For reversible state
Ox  ne

0
C
RT
E  E o '
ln o0
nF CR
Nernst equation
For irreversible state
Tafel equation
How to explain these empirical formula?
kf
kb
Red
Standard free energy
Activated complex
Gc
In electrochemistry,
electrochemical
potential was used
instead of chemical
potential (Gibbs
free energy)
Ga
Reactant
re G
product
Reaction coordinate
Potential curve described by Morse empirical equation
Ox  ne

kf
kb
Red
4.1.2 net current and exchange current
ia
Cu
Fe3+
Cu2+
ic
ic
ia
Fe2+
Ox  ne

kc
ka
Red
ic
rc  kc COx (0, t ) 
nFA
ia
ra  ka CRed (0, t ) 
nFA
Net current:
ic  nFAkc COx (0, t )
ia  nFAka CRed (0, t )
Net current:
i  ic  ia  nFA[kc cOx (0, t )  ka cRed (0, t )]
i  ic  ia  nFA[kc cOx (0, t )  ka cRed (0, t )]
If cOx = cRed = activity = 1 at re
At equilibrium condition
Then i net = 0
ic  ia  i0 standard exchange current
Gc
kT  RT
kc  
e
h
Ga
kT  RT
ka  
e
h
4.1.3 effect of overpotential on activation energy
Ox  ne
Red
ΔGc,0
ΔGa,0
ΔGa

c
ΔG
transfer coefficient
FΔ
F  Δ
   1
F Δ
polarization
  ir  re
ΔG  nFE  nFΔ
ΔG  ΔG0  nFΔ
Ox  ne
Red
ΔGc,0
c , re

a ,0
ΔG
ΔGa

c
ΔG
FΔ
F  Δ
 nFΔ
nFΔ
 nFΔ
c ,ir
a ,ir
F Δ
Fraction of applied potential alters activation energy  for
oxidation and  for reduction
Anode side
cathode side
Ga  Ga,0   nFΔ
Gc  Gc,0   nFΔ
 0
tan   FE / x
 nFΔ

x


 nFΔ
deuce
 
tan   (1   ) FE / x
tan 

tan   tan 
 is usually approximate to 1/2
4.1.4 Effect of polarization on reaction rate
Marcus theory: transition state theory
Gc ,0   nF 
k BT
kc   c
exp(
)
h
RT


G
k BT
 nF 
c ,0
 c
exp(
) exp(
)
h
RT
RT
 nF 
 kc ,0 exp(
)
RT

Ga,0   nF 
k BT
ka   a
exp(
h
 nF 
 ka ,0 exp(
)
RT
RT
)
ic  kc cOx (0, t )  nFcOx (0, t )kc ,0 exp(
 nF 
RT
)
No concentration polarization
ic  ic ,0 exp(
ia  ia ,0 exp(
 nF 
RT
 nF 
RT
If initial potential
is 0, then
)
)
2.3RT
2.3RT

lg ic ,0 
lg ic
 nF
 nF
2.3RT
2.3RT
 
lg ia ,0 
lg ia
 nF
 nF
2.3RT
2.3RT
c  re    
lg ic ,0 
lg ic
 nF
 nF
2.3RT
2.3RT
a    re  
lg ia ,0 
lg ia
 nF
 nF
At equilibrium
ia ,0  ic ,0  i0
2.3RT ic
c 
lg
 nF
i0
2.3RT ia
a 
lg
 nF
i0

c  
lg ic
2.3RT
2.3RT
lg i0 
lg ic
 nF
 nF
0  re
lg i
lg i0
lg ia
a  
2.3RT
2.3RT
lg i0 
lg ia
 nF
 nF
4.2 Electrochemical polarization
4.2.1 Master equation
ic  nFcOx (0, t )kc ,0 exp(
ia  nFcRed (0, t )ka ,0 exp(
 nF 
RT
 nF 
RT
)
)
inet  ic  ia
 nFcOx (0, t )kc ,0 exp(
 nF 
)  nFcRed (0, t ) ka ,0 exp(
 nF 
RT
RT
 nF 
 nF  

 nFk0 cOx (0, t ) exp(
)  cRed (0, t ) exp(
)
RT
RT


Master equation
)
Theoretical deduction of Nernst equation from Mater equation
 nF 
 nF  

inet  nFk0 cOx (0, t ) exp(
)  cRed (0, t ) exp(
)
RT
RT


At equilibrium inet  0
0
cOx (0, t )  cOx
;
0
cOx
exp(
 nF 
RT
0
cRed (0, t )  cRed
0
)  cRed
exp(
0
cOx
nF
 exp(
 )
0
RT
cRed
    
 nF 
RT
)
0
RT cOx
 
ln 0
nF cRed
0
RT cOx
Nernst equation
  
ln 0
nF cRed
Butler-Volmer equation
inet
 nF 
 nF  

 nFk0 cOx (0, t ) exp(
)  cRed (0, t ) exp(
)
RT
RT


 nF
 nF 

i  i0 exp(
 )  exp(
 )
RT
RT


Butler-Volmer equation
 nF
 nF 

i  i0 exp(
 )  exp(
 )
RT
RT


4.2.3 discussion of B-V equation
1) Limiting behavior at small overpotentials
exp(
 nF 
RT
)  1
 nF
RT

i
  nF    nF  
i  i0 1 
   1 
 
RT  
RT  

  nF    nF  
nF
i  i0 1 
   1 
    i0

RT  
RT  
RT

Current is a linear function of overpotential

i 
nF
 RT
 
i
i0
nF
Rct 
RTi0
Charge transfer resistance
False resistance
i/A
Cathode
Net current
/V
Anode
2) Limiting behavior at large overpotentials
 nF
 nF 

i  i0 exp(
 )  exp(
 )
RT
RT


i/A
Net current
/V
One term dominates
exp(
 nF
)
 nF 
RT
 exp 
   1%
 nF
 RT 
exp(
)
RT
Anode
Error is less than 1%
  118 mV
At cathodic polarization larger than 118 mV
inet  ic  ia  ic
Cathode
i  i0 exp(
 nF
RT
)
Taking logarithm of the equation gives:
lg i  lg i0 
 nF
2.3RT

2.3RT
2.3RT

lg i0 
lg i
 nF
 nF
Making comparison with Tafel equation
One can obtain
2.3RT
a
lg i0
 nF
  a  b lg i
2.3RT
b
 nF
b
At 25 oC, when n = 1,  = 0.5
2.3RT
 nF
b  118 mV
The typical Tafel slope
lg i
118 mV
118 mV
lg i0
300
200
100
0
-100
-200
-300
 / mV
log i0
re
Tafel plot:   log i plot
4.2.4 determination of kinetic parameters
2.3RT
a
lg i0
 nF
2.3RT
b
 nF
For evolution of hydrogen over Hg electrode
  1.40  0.118lg i
  0.5
i0  1.6 1012 A  cm 2
i0  nFcOx (0, t )kc ,0 exp(
 nF
RT
)
k  5 1013 cm  s1
4.2.5 Exchange current density
1) The exchange currents of different electrodes differ a lot
Electrode
materials
solutions
Electrode
reaction
i0 / Acm-2
H++2e– = H2
510-13
Cu2++2e– = Cu
210-5
H++2e– = H2
110-3
Hg
0.5 M sulfuric acid
Cu
1.0 M CuSO4
Pt
0.1 M sulfuric acid
Hg
110-3 M Hg2(NO3)2 Hg22++2e– = 2Hg
+ 2.0M HClO4
510-1
2) Dependence of exchange currents on electrolyte
concentration
Electrode reaction
Zn2++2e– = Zn
c (ZnSO4)
i0 / Acm-2
1.0
0.1
0.05
0.025
80.0
27.6
14.0
7.0
High electrolyte concentration is need for electrode to achieve
high exchange current.
2.3RT ic
c 
lg
 nF
i0

nF

i RTi0
2.3RT ic
c 
lg
 nF
i0
When i0 is large and i << i0, c is small.
When i0 = , c=0, ideal nonpolarizable
electrode
When i0 is small, c is large.
When i0 = 0, c = , ideal polarizable
electrode
The common current density used for electrochemical study
ranges between 10-6 ~ 1 Acm-2.
If exchange current of the electrode i0 > 10~100 Acm-2, it is
difficult for the electrode to be polarized.
When i0 > 10-8 Acm-2, the electrode will always undergoes
sever polarization.
For electrode with high exchange current, passing current
will affect the equilibrium a little, therefore, the electrode
potential is stable, which is suitable for reference electrode.
4.2 potential on electrode kinetics
Ox  ne

kc
ka
Red
Gc
k BT
ic  k
COx (0, t ) exp(
)
h
RT
Ga
k BT
ia  k
CRed (0, t ) exp(
)
h
RT
Shift of potential
Gc  Go,c   nF 
1 keeps
Ga  Ga   nF  constant
The nature of potential -dependence of rate
ic  nFAk f CO x (0, t )
G0.c
k BT
 nF 
 nFACOx (0, t )k
exp(
) exp( 
)
h
RT
RT
 nF
 i0,c exp(
 )
RT
At equilibrium: cox(0,t)= cox0 i0,c=i0,a=i0
 i0 exp(
 nF
RT
 )
Master equation:
inet
 nF 
 nF  

 nFk0 cOx (0, t ) exp(
)  cRed (0, t ) exp(
)
RT
RT


Master equation:
inet
 nF 
 nF  

 nFk0 cOx (0, t ) exp(
)  cRed (0, t ) exp(
)
RT
RT


At equilibrium inet  0
0
cOx (0, t )  cOx
;
0
RT cOx
  
ln 0
nF cRed
0
cRed (0, t )  cRed
Nernst equation
Master equation:
inet
 nF 
 nF  

 nFk0 cOx (0, t ) exp(
)  cRed (0, t ) exp(
)
RT
RT


Butler-Volmer equation
 nF
 nF 

i  i0 exp(
 )  exp(
 )
RT
RT


Butler-Volmer equation
 nF
 nF 

i  i0 exp(
 )  exp(
 )
RT
RT


at small overpotentials
nF
Rct 
RTi0
nF
i  i0

RT
Charge transfer resistance
at large overpotentials
  118 mV
inet  ic  ia  ic
2.3RT
2.3RT

lg i0 
lg i
 nF
 nF
2.3RT
a
lg i0
 nF
Tafel equation
2.3RT
b
 nF
4.3 Diffusion on electrode kinetic
When we discuss situations in 4.2, we didn’t take diffusion
polarization into consideration
When diffusion take effect :
G0.c
k BT
 nF
ic  nFACOx (0, t )k
exp(
) exp(
 )
h
RT
RT
COx (0, t ) 0 k BT
G0.c
 nF
ic  nFA
COx k
exp(
) exp(
 )
0
h
RT
RT
COx
inet
COx (0, t )
 nF
 ic 
i0 exp(
c )
0
RT
COx
inet
COx (0, t )
 nF
 ic 
i0 exp(
c )
0
RT
COx
At high cathodic polarization
i
C  C (1  )
id
s
i
0
i
i
 nF
i  (1  )i0 exp(
c )
id
RT
id  i
i
 nF
(
) exp(
c )
i0
id
RT
id  i
i
 nF
(
) exp(
c )
i0
id
RT
Taking logarithm yields
Therefore:
id  i
i
 nF
ln  ln(
)(
c )
i0
id
RT
id
RT
i RT
c 
ln 
ln
 nF io  nF id  i
Electrochemical term
Diffusion term
At this time the total polarization comprises of tow terms:
electrochemical term and diffusion term.
id
RT
i RT
c 
ln 
ln
 nF i0  nF id  i
Discussion :
1. id >> i >> i0
No diffusion
ec polarization
At small polarization :
i
At large polarization:
i
c
nF
i  i0

RT
0
c
RT
i
c 
ln
 nF i0
id
RT
i RT
c 
ln 
ln
 nF i0  nF id  i
2. id  i << i0
diffusion
No ec
RT
i
c 
ln 0
 nF i
is invalid
Id
RT
d 
ln(
)
nF
id  i
i  id
i


log i
id
RT
i RT
c 
ln 
ln
 nF i0  nF id  i
3. id  i >> i0 both terms take effect
4. i << i0, id no polarization
id
diff
1
id
2
ec
1/2
0  1/ 2
When id >>i0

id
RT
i RT
c 
ln 
ln
 nF i0  nF id  i
1
id
RT
RT
2

ln

ln 2
 nF
i0
 nF
id
RT
RT
RT

ln 
ln id 
ln i0
 nF i0  nF
 nF
 d1/ 2 
RT

 
 d ln i0 id  nF
id
diff
id
RT
i RT
c 
ln 
ln
 nF i0  nF id  i
ec
1/ 2

Id
RT

ln
 nF i0
lg id
lg i
118 mV
lg i0
400
300
200
100
0
-100
-200 -300 -400
Tafel plot under diffusion polarization
 / mV
Tafel plot with diffusion control:
i0 << i < 0.1 id
Electrochemical polarization
i between 0.1id  0.9id mixed control
i >0.9 id
diffusion control
How to overcome mixed / diffusion control?
The ways to elevate limiting diffusion current
4.4
EC methods under EC-diff mixed control
4.4.1 potential step
Using B-V equation with consideration of diffusion polarization
 COx (0, t )
CRed (0, t )
 nF
 nF 
it  i0 
exp(
) 
exp(
 )
0
0
RT
RT
CRed
 COx

at high polarization . c
COx (0, t )
 nF
it  i0
exp(
c )
0
RT
COx
c  constant
it  CO(0,t)
COx (0, t )
 nF
it  i0
exp(
c )
0
RT
COx
 nF
at low polarization :
RT
exp(
c
 nF
RT
is very small
c )  (1 
 nF
RT
c )
 CO (0, t ) CR (0, t ) nF
CO (0, t )
CR (0, t ) 
it  i0 


(

) 
0
0
0
0
RT
CR
CO
CR
 CO

Constant
Constant
1
1
2
it  i exp( 2 t )erfc(t )
i
1
2
3 2 t
is the current density at no concentration polarization at 
0
cOx (0, t )  cOx
;
t=0
0.5
0
cRed (0, t )  cRed
1
2
exp( 2t )erfc(t )  1
i(0)= i
no concentration polarization
When
t
1
2
it  t

1
it  ic 
1/ 2
at time right after the
potential step : it t1/2
is linear
ic

1
2
t
1/ 2 
ic
it
Double-layer charge
i 
EC control
Extrapolating the linear
part to y axes can obtain

2
diff control
C
Making potential jump to different  can obtain i at
different . Then plot i against c can obtain i~c without
concentration polarization.
The way to eliminate concentration polarization effect
c  time constant s
it > i due to charge of double layer capacitor
4.4.2 current step
i
cathodic current : 0  ic
ic
  nF

ic  nFk ' COx (0.t ) exp 
(  0 ) 
 RT

0
t
c at different i0
3.8.2 Current step / jump
1


2
t
 
ci (0, t )  ci0 1    
   


t
1
2
ic  nFk ' C [1  ( ) ]exp(
0
Ox

 nF
RT
)
t
1
2
ic  nFk ' C [1  ( ) ]exp(
0
Ox

 nF
RT
)
1
0
nFk
'
C
RT
RT
t 2
Ox
c (t )  
ln

ln[1  ( ) ]
 nF
ic
 nF

c (t )
t
1
2
[1  ( ) ]

  transition time
c
c
c(0)
when potential step
to next rxn.

0
i= i charge
t
The slope of the linear relationship between c (t) can be used to
determine n and .
When t0 the second
term = 0
(t  0)
0
nFK ' COx
RT

ln
 nF
ic
4.4.3 cyclic voltammetry (CV)
 (t )  0  vt
 COx (0, t )

CRed (0, t )
 nF
 nF
it  i0 
exp(
c (t )) 
exp(
c (t )) 
0
0
RT
RT
CRed
 COx

c (t )   (t )  0
I
Typical CV diagram for
reversible single electrode
I Pc
Potential separation
Δ   Pc   Pa 
I Pa

59
mV
n
For typical CV diagram of
irreversible single electrode
I
I Pc
59
Δ 
mV
n
I Pa

for fast EC reaction : i << i0
controlled by diffusion
i
v
0.2
0.1
0.0
0.1
0.2
for the reversible systems , use the forward kinetics only :
i  nFACO (0, t )k f (t )
can be only by numerical method:
1
2
Ox
1
2
0
i  nFACOx
D  (
 nF
RT
1
2
1
2
)  x(bt )
Nicholson-Shain equation
 tramper coefficient
n – number of electrons involved in charge transfer step
1
2
 x(bt )
is tabulated
x (bt) max =0.4958
For totally irreversible systems, peak potential shift with scan
rate
RT
k
 nFv
Ep  E  (
)[0.78  ln
 ln
]
F
RT
D
v
i
0.2
0.1
0.0
0.1
0.2
for slow EC reaction : ii0
( quasi reversible, irreversible)
in comparison to the same rate,
equilibrium can not establish
rapidly. Because current takes
more time to respond to the
applied voltage, Ep shift with
scan rate .
1.15 RT 30
Ep  E 

mV
n F
n
E p  E1/ 2 p
1.857 RT 47.7


 nF
n
per decade of change
in scan rate
56.5
P   P 
mV
n
2
drawn - out
ip  (2.99 10 )n( n)
5
1/ 2
0
Ox
1/ 2 1/ 2
AC D v
I P  2.69  10 n
5
ip COx0 lower due to 
if =0.5 n= 1
i p ,ir
i p , re
 0.78
3/ 2
D  c
1/2
Ox
1/ 2 0
Ox
i p  0.227 FAC k exp[
0
Ox
o
 RT
nF
( E p  E 0 )]
lnip  Ep E0 is linear with S= RT/nF, intercept is linearly
proportional to k0
4.4.4 effect of 1 potential on EC rate :

1=0, validate at high
concentration or larger
polarization
1
nF
x
effect of 1:
1.on concentration
2. =   1
zi F
C  C exp(  1 )
RT

i
0
i
( n  z0 ) F
 nF
ic  nFAk C exp(
 ) exp(
1)
RT
RT
0
Ox
ia  nFAk
0
Re d
0
Ox
0
Re d
C
( n  z0 ) F
 nF
exp(
 ) exp(
 1)
RT
RT
When z0 <0 ( minus ) n  1 large . For anion
reduced on cathode , 1 effect is more significant.
z0   n
RT
i  ic  ia    const 
ln i 
1
 nF
n
z0   n
RT
c  const 
ln i 
1
 nF
n
z0   n
 1  0 1 made c shift positively
n
minus <0
When z0  n
plus >0
-0
so: if 1 increases, i decreases
0.001M
0.01M
0.1M 1M
0.5
1M
0.1M
0.01M
without specific adsorption
 reduction of +1 cation
…… reduction of 1anion
+0.5
1 accelerates
4
2
0
+2
reduction of
cations slow reduction of anion
+4
lgi
z0   n
RT
c  const 
ln i 
1
 nF
n
if: n =z0
=0.5
Cu2+ +2e- = Cu
MnO4 +e = MnO42
H+ +e- = 1/2 H2
RT
c  const 
ln i  1
 nF
if :z0 =0
RT
c  const 
ln i  1
 nF
adsorption of anion slow reaction
Electrochemistry of LB film
exam:
1.Draw the potential change versus distance away from
electrode surface according to Stern electric double-layer and
indicate 1 potential
2. When the electrode was positively charged, the surface
concentration of action is still more than that of bulk solution.
Explain this phenomenon using specific adsorption model
3.The differential double layer capacitance of Cu/H2O surface
is 10-5 Fcm-2 while that for Cu/HS(CH2)11CH3 is 10-9Fcm-2
(can be taken as zero). If
the differential Cdl for a
Cu/HS(CH2)11CH3 system is measured to be 10-7 Fcm-2.
Please calculate the coverage of HS(CH2)11CH3 on copper.
4. Electro-capillary curves of Hg in KI and K2S solution are
shown in the Figure.
Please indicate the PZC of Hg on the

curves and explain the difference in
PZC.
KI
K2S

The curves coincide with each other
when potential is quite negative but
differ a lot when potential is positive,
please give explanation.
5.Tell how to determine whether or not a electrode process is
governed by diffusion. Given id for RDE can be expressed as
id= 0.62 nF Di2/31/2-1/6 ci0

Pt
6.This is a water drop with contact
angle of  on Pt surface. When
potential shift negatively, plot the
change of  with potential, i.e.,  ~ .
7.Deposition of Cu nanowire in microspore of anodic alumina
membrane (AAO) can be taken as ideal stable diffusion process. If
0
C
the thickness of (AAO) is 1m Cu =0.1 mol cm-1, DCu =105cm2
s-1. Please calculate the limiting diffusion current.
2
2
8. Convection affects diffusion. If the slope of concentration
gradient is  Ci  ,The effective thickness of diffusion layer E=
 x  x  0
and the dimity diffusion current id =
9.a typical CV peak is shown in
the figure. Please Indicate EP, EP/2,
Ere, and iP on it.
How can you determine whether or
not this electrochemical process is
electrochemical reversible?